Coarse-grained methods for polymeric materials: enthalpy- and entropy-driven models
Corresponding Author
Paola Carbone
School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom
Correspondence to: [email protected]Search for more papers by this authorCarlos Avendaño
School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom
Search for more papers by this authorCorresponding Author
Paola Carbone
School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom
Correspondence to: [email protected]Search for more papers by this authorCarlos Avendaño
School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, United Kingdom
Search for more papers by this authorThe authors have declared no conflicts of interest in relation to this article.
Abstract
Polymers are multiscale systems by construction. They are formed by several monomeric units connected by covalent bonds whose chemical nature defines the rigidity of the chain. The interconnection between the monomeric units determines the interdependence of the motion of the different chain segments and the intrinsic multiscale nature of polymeric materials. This characteristic is reflected on the different modeling techniques that can be used to simulate polymeric materials. Because of the large conformational space that needs to be sampled when simulating polymers, coarse-grained (CG) models are commonly used and depending on which part of the system free energy (enthalpy, entropy, or both) is relevant for the properties of interest, the appropriate modeling techniques should be used. Each model is characterized by advantages and limitations that can have a great impact on the quality of the results obtained. In this overview, we address some of the more common CG techniques presented in the literature for the modeling of polymeric materials at different length scales. WIREs Comput Mol Sci 2014, 4:62–70. doi: 10.1002/wcms.1149
This article is categorized under:
- Molecular and Statistical Mechanics > Molecular Dynamics and Monte-Carlo Methods
Graphical Abstract
RELATED WIREs ARTICLE
REFERENCES
- 1Kremer K, Grest GS. Dynamics of entangled linear polymer melts—a molecular dynamics simulation . J Chem Phys 1990, 92: 5057–5086.
- 2Glotzer SC, Paul W. Molecular and mesoscale simulation methods for polymer materials . Ann Rev Mater Res 2002, 32: 401–436.
- 3Karimi-Varzaneh HA, van der Vegt N, Müller-Plathe F, Carbone P. How good are coarse-grained polymer models? A comparison for atactic polystyrene . ChemPhysChem 2012, 13: 3428–3439.
- 4Voth GA. Coarse-Graining of Condensed Phase and Biomolecular Systems, CRC edn. Boca Raton, FL: Taylor and Francis; 2008.
10.1201/9781420059564 Google Scholar
- 5Baschnagel J, Binder K, Doruker P, Gusev AA, Hahn O, Kremer K, Mattice WL, Müller-Plathe F, Murat M, Paul W, et al. Bridging the gap between atomistic and coarse-grained models of polymers: status and perspectives . Adv Polym Sci 2000, 152: 41–156.
- 6Lyubartsev AP, Laaksonen A. Calculation of the effective interaction potentials from radial distribution functions—a reverse Monte-Carlo approach . Phys Rev E 1995, 52: 3730–3737.
- 7Tschöp W, Kremer K, Batoulis J, Bürger T, Hahn O. Simulation of polymer melts. I. Coarse-graining procedure for polycarbonates . Acta Polym 1998, 49(2–3): 61–74.
- 8Reith D, Pütz M, Müller-Plathe F. Deriving effective mesoscale potentials from atomistic simulations . J Comput Chem 2003, 24: 1624–1636.
- 9Müller-Plathe F. Coarse-graining in polymer simulation: from the atomistic to the mesoscopic scale and back . ChemPhysChem 2002, 3: 754–769.
- 10Carbone P, Karimi-Varzaneh HA, Müller-Plathe F. Fine-graining without coarse-graining: an easy and fast way to equilibrate dense polymer melts . Faraday Discuss 2010, 144: 25–42.
- 11Chen X, Carbone P, Santangelo G, Di Matteo A, Milano G, Müller-Plathe F. Backmapping coarse-grained polymer models under sheared nonequilibrium conditions . Phys Chem Chem Phys 2009, 11: 1977–1988.
- 12Santangelo G, Di Matteo A, Müller-Plathe F, Milano G. From mesoscale back to atomistic models: a fast reverse-mapping procedure for vinyl polymer chains . J Phys Chem B 2007, 111: 2765–2773.
- 13Tschöp W, Kremer K, Hahn O, Batoulis J, Bürger T. Simulation of polymer melts. II. From coarse-grained models back to atomistic description . Acta Polym 1998, 49: 75–79.
- 14Di Pasquale N, Marchisio D, Carbone P. Mixing atoms and coarse-grained beads to model polymer melts . J Chem Phys 2012, 137: 164111.
- 15Nielsen SO, Moore PB, Ensing B. Adaptive multiscale molecular dynamics of macromolecular fluids . Phys Rev Lett 2010, 105: 4.
- 16Praprotnik M, Delle Site L, Kremer K. Multiscale simulation of soft matter: from scale bridging to adaptive resolution . Annu Rev Phys Chem 2008, 59: 545–571.
- 17Delle Site L, Leon S, Kremer K. BPA-PC on a Ni(111) surface: the interplay between adsorption energy and conformational entropy for different chain-end modifications . J Am Chem Soc 2004, 126: 2944–2955.
- 18Qian H-J, Carbone P, Chen X, Karimi-Varzaneh HA, Liew CC, Müller-Plathet F. Temperature-transferable coarse-grained potentials for ethylbenzene, polystyrene, and their mixtures . Macromolecules 2008, 41: 9919–9929.
- 19Carbone P, Karimi-Varzaneh HA, Chen X, Müller-Plathe F. Transferability of coarse-grained force fields: the polymer case . J Chem Phys 2008, 128: 064904–064904.
- 20Brini E, Marcon V, van der Vegt NFA. Conditional reversible work method for molecular coarse graining applications . Phys Chem Chem Phys 2011, 13: 10468–10474.
- 21Fritz D, Harmandaris VA, Kremer K, van der Vegt NFA. Coarse-grained polymer melts based on isolated atomistic chains: simulation of polystyrene of different tacticities . Macromolecules 2009, 42: 7579–7588.
- 22Noid WG, Chu JW, Ayton GS, Krishna V, Izvekov S, Voth GA, Das A, Andersen HC. The multiscale coarse-graining method. I. A rigorous bridge between atomistic and coarse-grained models . J Chem Phys 2008, 128: 244114–244125.
- 23Ercolessi F, Adams JB. Interatomic potentials from 1st-principles calculations—the force-matching method . Europhys Lett 1994, 26: 583–588.
- 24Marrink SJ, Risselada HJ, Yefimov S, Tieleman DP, de Vries AH. The MARTINI force field: coarse grained model for biomolecular simulations . J Phys Chem B 2007, 111: 7812–7824.
- 25Shinoda W, Devane R, Klein ML. Multi-property fitting and parameterization of a coarse grained model for aqueous surfactants . Mol Simul 2007, 33: 27–36.
- 26Yesylevskyy SO, Schafer LV, Sengupta D, Marrink SJ. Polarizable water model for the coarse-grained MARTINI force field . PLoS Comput Biol 2010, 6: e1000810–e1000810.
- 27Shinoda W, DeVane R, Klein ML. Coarse-grained molecular modeling of non-ionic surfactant self-assembly . Soft Matter 2008, 4: 2454–2462.
- 28Klein ML, Shinoda W. Large-scale molecular dynamics simulations of self-assembling systems . Science 2008, 321: 798–800.
- 29Rossi G, Monticelli L, Puisto SR, Vattulainen I, Ala-Nissilä T. Coarse-graining polymers with the MARTINI force-field: polystyrene as a benchmark case . Soft Matter 2011, 7: 698–708.
- 30Rossi G, Elliott IG, Ala-Nissila T, Faller R. Molecular dynamics study of a MARTINI coarse-grained polystyrene brush in good solvent: structure and dynamics . Macromolecules 2012, 45: 563–571.
- 31Lafitte T, Avendano C, Papaioannou V, Galindo A, Adjiman CS, Jackson G, Müller EA. SAFT-gamma force field for the simulation of molecular fluids: 3. Coarse-grained models of benzene and hetero-group models of n-decylbenzene . Mol Phys 2012, 110: 1189–1203.
- 32Avendano C, Lafitte T, Galindo A, Adjiman CS, Jackson G, Müller EA. SAFT-gamma force field for the simulation of molecular fluids. 1. A single-site coarse grained model of carbon dioxide . J Phys Chem B 2011, 115: 11154–11169.
- 33Yelash L, Müller M, Paul W, Binder K. Artificial multiple criticality and phase equilibria: an investigation of the PC-SAFT approach . Phys Chem Chem Phys 2005, 7: 3728–3732.
- 34Astruc D, Boisselier E, Ornelas C. Dendrimers designed for functions: from physical, photophysical, and supramolecular properties to applications in sensing, catalysis, molecular electronics, photonics, and nanomedicine . Chem Rev 2010, 110: 1857–1959.
- 35Carbone P, Rapallo A, Ragazzi M, Tritto I, Ferro DR. Glass transition temperature and chain flexibility of ethylene-norbornene copolymers from molecular dynamics simulations . Macromol Theor Simul 2006, 15: 457–468.
- 36Schlüpp M, Weil T, Berresheim AJ, Wiesler UM, Bargon J, Müllen K. Polyphenylene dendrimers as sensitive and selective sensor layers . Angew Chem Int Edit 2001, 40: 4011.
10.1002/1521-3773(20011105)40:21<4011::AID-ANIE4011>3.0.CO;2-C CASPubMedWeb of Science®Google Scholar
- 37Carbone P, Lue L. Prediction of bulk density and molecular packing in model dendrimers with different chain stiffness . Macromolecules 2010, 43: 9191–9197.
- 38Carbone P, Müller-Plathe F. Molecular dynamics simulations of polyaminoamide (PAMAM) dendrimer aggregates: molecular shape, hydrogen bonds and local dynamics . Soft Matter 2009, 5: 2638–2647.
- 39Carbone P, Negri F, Müller-Plathe F. A coarse-grained model for polyphenylene dendrimers: switching and backfolding of planar three-fold core dendrimers . Macromolecules 2007, 40: 7044–7055.
- 40Blanazs A, Armes SP, Ryan AJ. Self-assembled block copolymer aggregates: from micelles to vesicles and their biological applications . Macromol Rapid Commun 2009, 30: 267–277.
- 41Nawaz S, Redhead M, Mantovani G, Alexander C, Bosquillon C, Carbone P. Interactions of PEO-PPO-PEO block copolymers with lipid membranes: a computational and experimental study linking membrane lysis with polymer structure . Soft Matter 2012, 8: 6744–6754.
- 42Bedrov D, Ayyagari C, Smith GD. Multiscale modeling of poly( ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymer micelles in aqueous solution . J Chem Theor Comp 2006, 2: 598–606.
- 43Hiemenz PC. Principles of Colloidal and Surface Chemistry. 3rd ed. New York: Marcel Dekker; 1997.
- 44Hernandez CJ, Mason TG. Colloidal alphabet soup: monodisperse dispersions of shape-designed LithoParticles . J Phys Chem C 2007, 111: 4477–4480.
- 45Kim JW, Larsen RJ, Weitz DA. Synthesis of nonspherical colloidal particles with anisotropic properties . J Am Chem Soc 2006, 128: 14374–14377.
- 46Sacanna S, Pine DJ. Shape-anisotropic colloids: building blocks for complex assemblies . Curr Opin Colloid Interface Sci 2011, 16: 96–105.
- 47Likos CN. Effective interactions in soft condensed matter physics . Phys Rep Rev Sec Phys Lett 2001, 348: 267–439.
- 48Pusey PN, Vanmegen W. Phase-behaviour of concentrated suspensions of nearly hard colloidal spheres . Nature 1986, 320: 340–342.
- 49Yethiraj A, van Blaaderen A. A colloidal model system with an interaction tunable from hard sphere to soft and dipolar . Nature 2003, 421: 513–517.
- 50Glotzer SC, Solomon MJ. Anisotropy of building blocks and their assembly into complex structures . Nat Mater 2007, 6: 557–562.
- 51Agarwal U, Escobedo FA. Mesophase behaviour of polyhedral particles . Nat Mater 2011, 10: 230–235.
- 52de Graaf J, van Roij R, Dijkstra M. Dense regular packings of irregular nonconvex particles . Phys Rev Lett 2011, 107: 155501.
- 53de la Pena LH, van Zon R, Schofield J, Opps SB. Discontinuous molecular dynamics for semiflexible and rigid bodies . J Chem Phys 2007, 126:74105–74118.
- 54Donev A, Torquato S, Stillinger FH. Neighbor list collision-driven molecular dynamics simulation for nonspherical hard particles. I. Algorithmic details . J Comput Phys 2005, 202: 737–764.
- 55Frenkel D, Ladd AJC. New Monte-Carlo method to compute the free energy of arbitrary solids—application to the FCC and HCP phases of hard spheres . J Chem Phys 1984, 81: 3188–3193.
- 56Filion L, Marechal M, van Oorschot B, Pelt D, Smallenburg F, Dijkstra M. Efficient method for predicting crystal structures at finite temperature: variable box shape simulations . Phys Rev Lett 2009, 103:188302–188306.
- 57Gottwald D, Kahl G, Likos CN. Predicting equilibrium structures in freezing processes . J Chem Phys 2005, 122:204503–204514.
- 58Torquato S, Jiao Y. Dense packings of the Platonic and Archimedean solids . Nature 2009, 460: 876–U109.
- 59Fortini A, Dijkstra M. Phase behaviour of hard spheres confined between parallel hard plates: manipulation of colloidal crystal structures by confinement . J Phys Condens Matter 2006, 18: L371–L378.