cp2k: atomistic simulations of condensed matter systems
Corresponding Author
Jürg Hutter
Physical Chemistry Institute, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
Correspondence to: [email protected]Search for more papers by this authorMarcella Iannuzzi
Physical Chemistry Institute, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
Search for more papers by this authorFlorian Schiffmann
Nanoscale Simulations, ETH Zurich, Wolfgang-Pauli-Strasse, Zurich, Switzerland
Search for more papers by this authorJoost VandeVondele
Nanoscale Simulations, ETH Zurich, Wolfgang-Pauli-Strasse, Zurich, Switzerland
Search for more papers by this authorCorresponding Author
Jürg Hutter
Physical Chemistry Institute, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
Correspondence to: [email protected]Search for more papers by this authorMarcella Iannuzzi
Physical Chemistry Institute, University of Zurich, Winterthurerstrasse, Zurich, Switzerland
Search for more papers by this authorFlorian Schiffmann
Nanoscale Simulations, ETH Zurich, Wolfgang-Pauli-Strasse, Zurich, Switzerland
Search for more papers by this authorJoost VandeVondele
Nanoscale Simulations, ETH Zurich, Wolfgang-Pauli-Strasse, Zurich, Switzerland
Search for more papers by this authorThe authors have declared no conflicts of interest in relation to this article.
Abstract
cp2k has become a versatile open-source tool for the simulation of complex systems on the nanometer scale. It allows for sampling and exploring potential energy surfaces that can be computed using a variety of empirical and first principles models. Excellent performance for electronic structure calculations is achieved using novel algorithms implemented for modern and massively parallel hardware. This review briefly summarizes the main capabilities and illustrates with recent applications the science cp2k has enabled in the field of atomistic simulation. WIREs Comput Mol Sci 2014, 4:15–25. doi: 10.1002/wcms.1159
This article is categorized under:
- Software > Simulation Methods
Graphical Abstract
REFERENCES
- 1 The CP2K Developers Group. Available at: http://www.cp2k.org/(2012). (Accessed May 31, 2013).
- 2Treier M, Pignedoli CA, Laino T, Rieger R, Muellen K, Passerone D, Fasel R. Surface-assisted cyclodehydrogenation provides a synthetic route towards easily processable and chemically tailored nanographenes. Nature Chem 2011, 3: 61–67.
- 3Reiher M, Neugebauer J. A mode-selective quantum chemical method for tracking molecular vibrations applied to functionalized carbon nanotubes. J Chem Phys 2003, 118: 1634–1641.
- 4Schiffmann F, VandeVondele J, Hutter J, Wirz R, Urakawa A, Baiker A. Protonation-dependent binding of Ruthenium bipyridyl complexes to the anatase(101) surface. J Phys Chem C 2010, 114: 8398–8404.
- 5Jonsson H, Mills G, Jacobsen KW. Nudged elastic band method for finding minimum energy paths of transitions. In: BJ Berne, G Ciccotti, DF Coker, eds. Classical and Quantum Dynamics in Condensed Phase Simulations. Singapore: World Scientific; 1998, 385–404.
- 6Frenkel D, Smit B. Understanding Molecular Simulation—From Algorithms to Applications. San Diego: Academic Press; 1996 and 2002.
- 7Mundy CJ, Balasubramanian S, Bagchi K, Tuckerman ME, Martyna GJ, Klein ML. Nonequilibrium molecular dynamics. Rev Comp Chem 2000, 14: 291–397.
- 8Chipot Ch, Pohorille A. Free Energy Calculations: Theory and Applications in Chemistry and Biology. Berlin Heidelberg: Springer-Verlag; 2007.
- 9Jones A, Leimkuhler B. Adaptive stochastic methods for sampling driven molecular systems. J Chem Phys 2011, 135: 084125.
- 10Ceriotti M, Bussi G, Parrinello M. Langevin equation with colored noise for constant-temperature molecular dynamics simulations. Phys Rev Lett 2009, 102: 020601.
- 11Bussi G, Donadio D, Parrinello M. Canonical sampling through velocity rescaling. J Chem Phys 2007, 126: 014101.
- 12Nosé S. Constant temperature molecular-dynamics methods. Prog Theor Phys Suppl 1991, 103: 1–46.
- 13VandeVondele J, Röthlisberger U. Canonical adiabatic free energy sampling (CAFES): a novel method for the exploration of free energy surfaces. J Phys Chem B 2002, 106: 203–208.
- 14Nagata Y, Pool RE, Backus EHG, Bonn M. Nuclear quantum effects affect bond orientation of water at the water-vapor interface. Phys Rev Lett 2012, 109: 226101.
- 15Reed EJ, Fried LE, Joannopoulos JD. A method for tractable dynamical studies of single and double shock compression. Phys Rev Lett 2003, 90: 235503.
- 16Tuckerman ME, Berne BJ, Martyna GJ. Reversible multiple time scale molecular-dynamics. J Chem Phys 1992, 97: 1990–2001.
- 17Guidon M, Schiffmann F, Hutter J, VandeVondele J. Ab initio molecular dynamics using hybrid density functionals. J Chem Phys 2008, 128: 214104.
- 18Tuckerman ME, Marx D, Klein ML, Parrinello M. Efficient and general algorithms for path integral Car–Parrinello molecular dynamics. J Chem Phys 1996, 104: 5579–5588.
- 19Walewski L, Forbert H, Marx D. Quantum induced bond centering in microsolvated HCl: solvent separated versus contact ion pairs. J Phys Chem Lett 2011, 2: 3069–3074.
- 20VandeVondele J, Krack M, Mohamed F, Parrinello M, Chassaing T, Hutter J. QUICKSTEP: fast and accurate density functional calculations using a mixed Gaussian and plane waves approach. Comp Phys Comm 2005, 167: 103–128.
- 21Hutter J. Car-Parrinello molecular dynamics. WIREs Comput Mol Sci 2012, 2: 604–612.
- 22Kolafa J. Time-reversible always stable predictor-corrector method for molecular dynamics of polarizable molecules. J Comp Chem 2004, 25: 335–342.
- 23Kühne TD, Krack M, Mohamed FR, Parrinello M. Efficient and accurate car–parrinello–like approach to Born–Oppenheimer molecular dynamics. Phys Rev Lett 2007, 98: 066401.
- 24Laio A, Parrinello M. Escaping free-energy minima. Proc Natl Acad Sci 2002, 99: 12562–12566.
- 25Barducci A, Bonomi M, Parrinello M. Metadynamics. WIREs Comput Mol Sci 2011, 1: 826–843.
- 26Michel C, Laio A, Mohamed F, Krack M, Parrinello M, Milet A. Free energy ab initio metadynamics: a new tool for the theoretical study of organometallic reactivity? Example of the C-C and C-H reductive eliminations from platinum(IV) complexes. Organometallics 2007, 26: 1241–1249.
- 27Masson F, Laino T, Rothlisberger U, Hutter J. A QM/MM investigation of thymine dimer radical anion splitting catalyzed by DNA photolyase. Chem Phys Chem 2009, 10: 400–410.
- 28Masson F, Laino T, Tavernelli I, Rothlisberger U, Hutter J. Computational study of thymine dimer radical anion splitting in the self-repair process of duplex DNA. J Am Chem Soc 2008, 130: 3443–3450.
- 29Santarossa G, Vargas A, Iannuzzi M, Baiker A. Free energy surface of two- and three-dimensional transitions of au 12 nanoclusters obtained by ab initio metadynamics. Phys Rev B 2010, 81: 174205.
- 30Pignedoli CA, Laino T, Treier M, Fasel R, Passerone D. A simple approach for describing metal-supported cyclohexaphenylene dehydrogenation. EPJ B 2010, 75: 65–70.
- 31Miceli G, Bernasconi M. First-principles study of the hydrogenation process of Li2NH. J Phys Chem C 2011, 115: 13496–13501.
- 32Selli D, Baburin IA, Martonák R, Leoni S. Superhard
carbon allotropes with odd and even ring topologies. Phys Rev B 2011, 84: 161411.
- 33Kuo IFW, Mundy CJ, McGrath MJ, Siepmann JI, VandeVondele J, Sprik M, Hutter J, Chen B, Klein ML, Mohamed F, et al. Liquid water from first principles: investigation of different sampling approaches. J Phys Chem B 2004, 108: 12990–12998.
- 34McGrath MJ, Siepmann JI, Kuo IFW, Mundy CJ, VandeVondele J, Hutter J, Mohamed F, Krack M. Isobaric-isothermal Monte Carlo simulations from first principles: application to liquid water at ambient conditions. Chem Phys Chem 2005, 6: 1894–1901.
- 35McGrath MJ, Siepmann JI, Kuo IFW, Mundy CJ, VandeVondele J, Sprik M, Hutter J, Mohamed, Krack M, Parrinello M. Toward a Monte Carlo program for simulating vapor-liquid phase equilibria from first principles. Comp Phys Comm 2005, 169: 289–294.
- 36McGrath MJ, Siepmann JI, Kuo IFW, Mundy CJ, VandeVondele J, Hutter J, Mohamed F, Krack M. Simulating fluid-phase equilibria of water from first principles. J Phys Chem A 2006, 110: 640–646.
- 37Kuo IFW, Mundy CJ, McGrath MJ, Siepmann JI. Structure of the methanol liquid-vapor interface: a comprehensive particle-based simulation study. J Phys Chem C 2008, 112: 15412–15418.
- 38Marx D, Hutter J. Ab Initio Molecular Dynamics. Cambridge: Cambridge University Press; 2009.
- 39Kunert T, Schmidt R. Non-adiabatic quantum molecular dynamics: general formalism and case study H-2(+) in strong laser fields. EPJ D 2003, 25: 15–24.
- 40Castro A, Marques MAL, Rubio A. Propagators for the time-dependent Kohn-Sham equations. J Chem Phys 2004, 121: 3425–3433.
- 41Chen H, Ratner MA, Schatz GC. Theoretical calculation of the photo-induced electron transfer rate between a gold atom and a gold cation solvated in CCl4. J Photochem Photobiol A: Chem 2011, 221: 143–147.
- 42Foiles SM, Baskes MI, Daw MS. Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. Phys Rev B 1986, 33: 7983–7991.
- 43Devynck F, Iannuzzi M, Krack M. Frenkel pair recombinations in UO2: importance of explicit description of polarizability in core-shell molecular dynamics simulations. Phys Rev B 2012, 85: 184103.
- 44Laino T, Hutter J. Notes on “Ewald summation of electrostatic multipole interactions up to quadrupolar level” [J. Chem. Phys. 119, 7471 (2003)]. J Chem Phys 2008, 129: 074102.
- 45Laino T, Mohamed F, Laio A, Parrinello M. An efficient linear-scaling electrostatic coupling for treating periodic boundary conditions in QM/MM simulations. J Chem Theory Comput 2006, 2: 1370–1378.
- 46Jensen F. Introduction to Computational Chemistry. Chichester: John Wiley & Sons; 2007.
- 47Murdachaew G, Mundy CJ, Schenter GK, Laino T, Hutter J. Semiempirical self-consistent polarization description of bulk water, the liquid-vapor interface, and cubic ice. J Phys Chem A 2011, 115: 6046–6053.
- 48Porezag D, Frauenheim T, Köhler T, Seifert G, Kaschner R. Construction of tight-binding-like potentials on the basis of density-functional theory: application to carbon. Phys Rev B 1995, 51: 12947–12957.
- 49Parr RG, Yang W. Density-Functional Theory of Atoms and Molecules. Oxford: Oxford University Press; 1989.
- 50Marques MAL, Oliveira MJT, Burnus T. LIBXC: a library of exchange and correlation functionals for density functional theory. Comp Phys Comm 2012, 183: 2272–2281.
- 51Guidon M, Hutter J, VandeVondele J. Robust periodic Hartree-Fock exchange for large-scale simulations using Gaussian basis sets. J Chem Theory Comput 2009, 5: 3010–3021.
- 52Guidon M, Hutter J, VandeVondele J. Auxiliary density matrix methods for Hartree–Fock exchange calculations. J Chem Theory Comput 2010, 6: 2348–2364.
- 53Del Ben M, Hutter J, VandeVondele J. Second-order Moller-Plesset perturbation theory in the condensed phase: an efficient and massively parallel Gaussian and plane waves approach. J Chem Theory Comput 2012, 8: 4177–4188.
- 54Eshuis H, Bates JE, Furche F. Electron correlation methods based on the random phase approximation. Theor Chem Acc 2012, 131: 1084.
- 55Ren X, Rinke P, Blum V, Wieferink J, Tkatchenko A, Sanfilippo A, Reuter K, Scheffler M. Resolution-of-identity approach to Hartree-Fock, hybrid density functionals, RPA, MP2 and GW with numeric atom-centered orbital basis functions. New J Phys 2012, 14: 053020.
- 56VandeVondele J, Hutter J. An efficient orbital transformation method for electronic structure calculations. J Chem Phys 2003, 118: 4365–4369.
- 57Brugger T, Ma HF, Iannuzzi M, Berner S, Winkler A, Hutter J, Osterwalder J, Greber T. Nanotexture switching of single-layer hexagonal boron nitride on rhodium by intercalation of hydrogen atoms. Angew Chem Int Ed 2010, 49: 6120–6124.
- 58Iannuzzi M, Hutter J. Comparative study of the nature of chemical bonding of corrugated graphene on Ru(0001) and Rh(111) by electronic structure calculations. Surf Sci 2011, 605: 1360–1368.
- 59Ding Y, Iannuzzi M, Hutter J. Investigation of Boron Nitride Nanomesh interacting with water. J Phys Chem C 2011, 115: 13685–13692.
- 60Auckenthaler T, Blum V, Bungartz HJ, Huckle T, Johanni R, Krämer L, Lang B, Lederer H, Willems PR. Parallel solution of partial symmetric eigenvalue problems from electronic structure calculations. Paral Comput 2011, 37: 783–794.
- 61Joshi S, Ecija D, Koitz R, Iannuzzi M, Seitsonen AP, Hutter J, Sachdev H, Vijayaraghavan S, Bischoff F, Seufert K, et al. Boron nitride on Cu(111): an electronically corrugated monolayer. Nano Lett 2012, 12: 5821–5828.
- 62VandeVondele J, Borstnik U, Hutter J. Linear scaling self-consistent field calculations with millions of atoms in the condensed phase. J Chem Theory Comput 2012, 8: 3565–3573.
- 63Lippert G, Hutter J, Parrinello M. A hybrid Gaussian and plane wave density functional scheme. Mol Phys 1997, 92: 477–487.
- 64Genovese L, Deutsch T, Neelov A, Goedecker S, Beylkin G. Efficient solution of Poisson's equation with free boundary conditions. J Chem Phys 2006, 125: 074105.
- 65Goedecker S, Teter M, Hutter J. Separable dual-space Gaussian pseudopotentials. Phys Rev B 1996, 54: 1703–1710.
- 66Hartwigsen C, Goedecker S, Hutter J. Relativistic separable dual-space Gaussian pseudopotentials from H to Rn. Phys Rev B 1998, 58: 3641–3662.
- 67Krack M. Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals. Theor Chem Acc 2005, 114: 145–152.
- 68VandeVondele J, Hutter J. Gaussian basis sets for accurate calculations on molecular systems in gas and condensed phases. J Chem Phys 2007, 127: 114105.
- 69Lippert G, Hutter J, Parrinello M. The Gaussian and augmented-plane-wave density functional method for ab initio molecular dynamics simulations. Theor Chem Acc 1999, 103: 124–140.
- 70Iannuzzi M, Chassaing T, Wallman T, Hutter J. Ground and excited state density functional calculations with the Gaussian and augmented-plane-wave method. Chimia 2005, 59: 499–503.
- 71Blöchl PE. Projector augmented–wave method. Phys Rev B 1994, 50: 17953–17979.
- 72Iannuzzi M, Hutter J. Inner-shell spectroscopy by the Gaussian and augmented plane wave method. Phys Chem Chem Phys 2007, 9: 1599–1610.
- 73Weber V, Iannuzzi M, Giani S, Hutter J, Declerck R, Waroquier M. Magnetic linear response properties calculations with the Gaussian and augmented-plane-wave method. J Chem Phys 2009, 131: 014106.
- 74Declerck R, Pauwels E, Van Speybroeck V, Waroquier M. First-principles calculations of hyperfine parameters with the Gaussian and augmented-plane-wave method: application to radicals embedded in a crystalline environment. Phys Rev B 2006, 74: 245103.
- 75Frigo M, Johnson SG. The design and implementation of FFTW3. Proc IEEE 2005, 93: 216–231.
- 76Valeev EF, Fermann JT. Libint: machine-generated library for efficient evaluation of molecular integrals over Gaussians. Available at: http://sourceforge.net/p/libint. (Accessed May 31, 2013).
- 77Schiffmann F, Hutter J, VandeVondele J. Atomistic simulations of a solid/liquid interface: a combined force field and first principles approach to the structure and dynamics of acetonitrile near an anatase surface. J Phys: Condens Matter 2008, 20: 064206.
- 78Schiffmann F, VandeVondele J, Hutter J, Urakawa A, Wirz R, Baiker A. An atomistic picture of the regeneration process in dye sensitized solar cells. Proc Natl Acad Sci 2010, 107: 4830–4833.
- 79Watkins M, Pan D, Wang EG, Michaelides A, VandeVondele J, Slater B. Large variation of vacancy formation energies in the surface of crystalline ice. Nat Mater 2011, 10: 794–798.
- 80Schmidt J, VandeVondele J, Kuo IFW, Sebastiani D, Siepmann JI, Hutter J, Mundy CJ. Isobaric-isothermal molecular dynamics simulations utilizing density functional theory: an assessment of the structure and density of water at near-ambient conditions. J Phys Chem B 2009, 113: 11959–11964.
- 81Kuo IFW, Mundy CJ, Eggimann BL, McGrath MJ, Siepmann JI, Chen B, Vieceli J, Tobias DJ. Structure and dynamics of the aqueous liquid-vapor interface: a comprehensive particle-based simulation study. J Phys Chem B 2006, 110: 3738–3746.
- 82Baer MD, Mundy CJ, McGrath MJ, Kuo IFW, Siepmann JI, Tobias DJ. Re-examining the properties of the aqueous vapor-liquid interface using dispersion corrected density functional theory. J Chem Phys 2011, 135: 124712.
- 83Mundy CJ, Kuo IFW, Tuckerman ME, Lee HS, Tobias DJ. Hydroxide anion at the air-water interface. Chem Phys Lett 2009, 481: 2–8.
- 84Watkins M, VandeVondele J, Slater B. Point defects at the ice (0001) surface. Proc Natl Acad Sci 2010, 107: 12429–12434.
- 85Baer MD, Mundy CJ, Chang TM, Tao FM, Dang LX. Interpreting vibrational sum-frequency spectra of sulfur dioxide at the air/water interface: a comprehensive molecular dynamics study. J Phys Chem B 2010, 114: 7245–7249.
- 86Ma HF, Ding Y, Iannuzzi M, Brugger T, Berner S, Hutter J, Osterwalder J, Greber T. Chiral distortion of confined ice oligomers (n = 5,6). Langmuir 2012, 28: 15246–15250.
- 87Berner S, Corso M, Widmer R, Groening O, Laskowski R, Blaha P, Schwarz KH, Goriachko A, Over H, Gsell S, et al. Boron nitride nanomesh: functionality from a corrugated monolayer. Angew Chem Int Ed 2007, 46: 5115–5119.
- 88Ma HF, Brugger T, Berner S, Ding Y, Iannuzzi M, Hutter J, Osterwalder J, Greber T. Nano-ice on boron nitride nanomesh: accessing proton disorder. Chem Phys Chem 2010, 11: 399–403.