A systematic review and meta-analysis of memory-guided attention: Frontal and parietal activation suggests involvement of fronto-parietal networks
Corresponding Author
Manda Fischer
Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
Correspondence
Manda Fischer, Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada.
Email: [email protected]
Search for more papers by this authorMorris Moscovitch
Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorClaude Alain
Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorCorresponding Author
Manda Fischer
Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
Correspondence
Manda Fischer, Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada.
Email: [email protected]
Search for more papers by this authorMorris Moscovitch
Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorClaude Alain
Department of Psychology, Rotman Research Institute, University of Toronto, Toronto, ON, Canada
Search for more papers by this authorFunding information: Natural Sciences and Engineering Research Council of Canada, Grant/Award Numbers: A83470, RGPIN-2016-05523
Abstract
Prior knowledge and long-term memory can guide our attention to facilitate search for and detection of subtle targets embedded in a complex scene. A number of neuropsychological and experimental studies have investigated this effect, yet results in the field remain mixed, as there is a lack of consensus regarding the neural correlates thought to support memory-guided attention. The purpose of this systematic review and meta-analysis was to identify a common set of brain structures involved in memory-guided attention. Statistical analyses were computed on functional magnetic resonance imaging (fMRI) studies that presented participants with a task that required them to detect a target or a change embedded in repeated and novel complex visual displays. After a systematic search, 10 fMRI studies met the selection criteria and were included in the analysis. The results yielded four significant clusters. Activity in right inferior parietal (Brodmann area [BA] 9) and right superior parietal (BA 7) lobes suggests involvement of a fronto-parietal attention network, while activity in left mid-cingulate cortex (BA 23) and right middle frontal gyrus (BA 10) suggests involvement of a fronto-parietal control network. These findings are consistent with the notion that fronto-parietal circuits are important for interfacing retrieved memories with attentional systems to guide search.
This article is categorized under:
- Psychology > Memory
- Psychology > Learning
- Psychology > Attention
Graphical Abstract
CONFLICT OF INTEREST
No conflict of interest to disclose.
FURTHER READING
- Wang, J. X., Cohen, N. J., & Voss, J. L. (2015). Covert rapid action-memory simulation (CRAMS): A hypothesis of hippocampal-prefrontal interactions for adaptive behavior. Neurobiology of Learning and Memory, 117, 22–33. https://doi.org/10.1016/j.nlm.2014.04.003
REFERENCES
- Aly, M., & Turk-Browne, N. B. (2016a). Attention promotes episodic encoding by stabilizing hippocampal representations. Proceedings of the National Academy of Sciences, 113(4), E420–E429. https://doi.org/10.1073/pnas.1518931113
- Aly, M., & Turk-Browne, N. B. (2016b). Attention stabilizes representations in the human hippocampus. Cerebral Cortex, 26(2), 783–796. https://doi.org/10.1093/cercor/bhv041
- Aly, M., & Turk-Browne, N. B. (2017). How hippocampal memory shapes, and is shaped by, attention. In D. E. Hannula & M. C. Duff (Eds.), The hippocampus from cells to systems (pp. 369–403). Springer International Publishing AG: Switzerland.
- Best, P., Taylor, B., Manktelow, R., & McQuilkin, J. (2014). Systematically retrieving research in the digital age: Case study on the topic of social networking sites and young people's mental health. Journal of Information Science, 40(3), 346–356. https://doi.org/10.1177/0165551514521936
- Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Science, 14(6), 277–290. https://doi.org/39991125210.1016/j.tics.2010.04.004
- Bridge, D. J., Cohen, N. J., & Voss, J. L. (2017). Distinct hippocampal versus frontoparietal network contributions to retrieval and memory-guided exploration. Journal of Cognitive Neuroscience, 29(8), 1324–1338. https://doi.org/10.1162/jocn_a_01143
- Bubb, E. J., Metzler-Baddeley, C., & Aggleton, J. P. (2018). The cingulum bundle: Anatomy, function, and dysfunction. Neuroscience and Biobehavioral Reviews, 92, 104–127. https://doi.org/10.1016/j.neubiorev.2018.05.008
- Cabeza, R. (2008). Role of parietal regions in episodic memory retrieval: The dual attentional processes hypothesis. Neuropsychologia, 46, 1813–1827.
- Cabeza, R., Ciaramelli, E., & Moscovitch, M. (2012). Cognitive contributions of the ventral parietal cortex: An integrative theoretical account. Trends in Cognitive Sciences, 16(6), 338–352. https://doi.org/10.1016/j.tics.2012.04.008
- Cabeza, R., Ciaramelli, E., Olson, I. R., & Moscovitch, M. (2008). The parietal cortex and episodic memory: An attentional account. Nature Reviews Neuroscience, 9(8), 613–625. http://doi.org/10.1038/nrn2459
- Cabeza, R., & Moscovitch, M. (2013). Memory systems, processing modes, and components: Functional neuroimaging evidence. Perspectives on Psychological Science, 8(1), 49–55. https://doi.org/10.1177/1745691612469033
- Cabeza, R., & Nyberg, L. (2000). Imaging cognition II: An empirical review of 275 PET and fMRI studies. Journal of Cognitive Neuroscience, 12(1), 1–47. https://doi.org/10.1162/08989290051137585
- Camilleri, J. A., Müller, V. I., Fox, P., Laird, A. R., Hoffstaedter, F., Kalenscher, T., & Eickhoff, S. B. (2018). Definition and characterization of an extended multiple-demand network. NeuroImage, 165, 138–147. https://doi.org/10.1016/j.neuroimage.2017.10.020
- Campbell, A., Taylor, B., Bates, J., & O'Connor-Bones, U. (2017). Developing and applying a protocol for a systematic review in the social sciences. New Review of Academic Librarianship, 24(1), 1–22. https://doi.org/10.1080/13614533.2017.1281827
- Caplan, J. B., Luks, T. L., Simpson, G. V., Glaholt, M., & McIntosh, A. R. (2006). Parallel networks operating across attentional deployment and motion processing: A multi-seed partial least squares fMRI study. Neuroimage, 29(4), 1192–1202. https://doi.org/10.1016/j.neuroimage.2005.09.010
- Carr, V. A., Rissman, J., & Wagner, A. D. (2010). Imaging the human medial temporal lobe with high-resolution fMRI. Neuron, 65(3), 298–308. https://doi.org/10.1016/j.neuron.2009.12.022
- Chambers, C. D., Payne, J. M., Stokes, M. G., & Mattingley, J. B. (2004). Fast and slow parietal pathways mediate spatial attention. Nature Neuroscience, 7, 217–218. http://doi.org/10.1038/nn1203
- Chaumon, M., Schwartz, D., & Tallon-Baudry, C. (2009). Unconscious learning versus visual perception: Dissociable roles for gamma oscillations revealed in MEG. Journal of Cognitive Neuroscience, 21(12), 2287–2299. https://doi.org/10.1162/jocn.2008.21155
- Chiu, Y. C., & Yantis, S. (2009). A domain-independent source of cognitive control for task sets: Shifting spatial attention and switching categorization rules. Journal of Neuroscience, 29, 3930–3938. https://doi.org/10.1523/JNEUROSCI.5737-08.2009
- Chun, M. M., & Jiang, Y. (1998). Contextual cueing: Implicit learning and memory of visual context guides spatial attention. Cognitive Psychology, 36, 28–71. https://doi.org/10.1006/cogp.1998.0681
- Chun, M. M., & Phelps, E. A. (1999). Memory deficits for implicit contextual information in amnesic participants with hippocampal damage. Nature Neuroscience, 2(9), 844–847. http://doi.org/10.1038/12222
- Ciaramelli, E., Grady, C., Levine, B., Ween, J., & Moscovitch, M. (2010). Top-down and bottom-up attention to memory are dissociated in posterior parietal cortex: Neuroimaging and neuropsychological evidence. Journal of Neuroscience, 30(14), 4943–4956. https://doi.org/10.1523/JNEUROSCI.1209-09.2010
- Ciaramelli, E., Grady, C. L., & Moscovitch, M. (2008). Top-down and bottom-up attention to memory: A hypothesis (AtoM) on the role of the posterior parietal cortex in memory retrieval. Neuropsychologia, 46(7), 1828–1851. http://doi.org/10.1016/j.neuropsychologia.2008.03.022
- Cieslik, E. C., Mueller, V. I., Eickhoff, C. R., Langner, R., & Eickhoff, S. B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience & Biobehavioral Reviews, 48, 22–34. https://doi.org/10.1016/j.neubiorev.2014.11.003
- Cole, M. W., & Schneider, W. (2007). The cognitive control network: Integrated cortical regions with dissociable functions. NeuroImage, 37(1), 343–360. https://doi.org/10.1016/j.neuroimage.2007.03.071
- Corbetta, M., & Shulman, G. L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3(3), 201–215. http://doi.org/10.1038/nrn755
- Córdova, N. I., Turk-Browne, N. B., & Aly, M. (2019). Focusing on what matters: Modulation of the human hippocampus by relational attention. Hippocampus, 29(11), 1025–1037. https://doi.org/10.1002/hipo.23082
- Cowell, R. A., Barense, M. D., & Sadil, P. S. (2019). A roadmap for understanding memory: Decomposing cognitive processes into operations and representations. eNeuro, 6(4), 1–19. https://doi.org/10.1523/ENEURO.0122-19.2019
- de Bourbon-Teles, J., Bentley, P., Koshino, S., Shah, K., Dutta, A., Malhotra, P., … Soto, D. (2014). Thalamic control of human attention driven by memory and learning. Current Biology, 24(9), 993–999. https://doi.org/10.1016/j.cub.2014.03.024
- Decker, A. L., & Duncan, K. (2020). Acetylcholine and the complex interdependence of memory and attention. Current Opinion in Behavioral Sciences, 32, 21–28. https://doi.org/10.1016/j.cobeha.2020.01.013
- Dixon, M. L., De La Vega, A., Mills, C., Andrews-Hanna, J., Spreng, R. N., Cole, M. W., & Christoff, K. (2018). Heterogeneity with the frontoparietal network. Proceedings of the National Academy of Sciences, 115(7), E1598–E1607. https://doi.org/10.1073/pnas.1715766115
- Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Science, 14(4), 172–179. https://doi.org/10.1016/j.tics.2010.01.004
- Duncan, J. (2013). The structure of cognition: Attentional episodes in mind and brain. Neuron, 80(1), 35–50. https://doi.org/10.1016/j.neuron.2013.09.015
- Eichenbaum, H. (2000). A cortical-hippocampal system for declarative memory. Nature Reviews Neuroscience, 1(1), 41–50. http://doi.org/10.1038/35036213
- Eickhoff, S. B., Bzdok, D., Laird, A. R., Kurth, F., & Fox, P. T. (2012). Activation likelihood estimation meta-analysis revisited. NeuroImage, 59(3), 2349–2361. http://doi.org/10.1016/j.neuroimage.2011.09.017
- Eickhoff, S. B., Laird, A. R., Grefkes, C., Wang, L. E., Zilles, K., & Fox, P. T. (2009). Coordinate-based activation likelihood estimation meta-analysis of neuroimaging data: A random-effects approach based on empirical estimates of spatial uncertainty. Human Brain Mapping, 30, 2907–2926. https://doi.org/10.1002/hbm.20718
- Eickhoff, S. B., Nichols, T. E., Laird, A. R., Hoffstaedter, F., Amunts, K., Fox, P. T., … Eickhoff, C. R. (2016). Behavior, sensitivity, and power of activation likelihood estimation characterized by massive empirical simulation. NeuroImage, 137(15), 70–85. https://doi.org/10.1016/j.neuroimage.2016.04.072
- Fischer, M., Moscovitch, M., & Alain, C. (2020). Incidental auditory learning and memory-guided attention: Examining the role of attention at the behavioural and neural level using EEG. Neuropsychologia, 147, 187506. https://doi.org/10.1016/j.neuropsychologia.2020.107586
- Gazzaley, A., & Nobre, A. C. (2012). Top-down modulation: Bridging selective attention and working memory. Trends in Cognitive Sciences, 16(2), 129–135. https://doi.org/10.1016/j.tics.2011.11.014
- Giesbrecht, B., Sy, J. L., & Guerin, S. A. (2013). Both memory and attention systems contribute to visual search for targets cued by implicitly learned context. Vision Research, 85, 80–89. https://doi.org/10.1016/j.visres.2012.10.006
- Giesbrecht, B., Woldorff, M. G., Song, A. W., & Mangun, G. R. (2003). Neural mechanisms of top-down control during spatial and feature attention. NeuroImage, 19, 496–512. https://doi.org/10.1016/s1053-8119(03)00162-9
- Goh, J. O., Siong, S. C., Park, D., Gutchess, A., Hebrank, A., & Chee, M. W. (2004). Cortical areas involved in object, background, and object-background processing revealed with functional magnetic resonance adaptation. Journal of Neuroscience, 24(45), 10223–10228. https://doi.org/10.1523/JNEUROSCI.3373-04.2004
- Goldfarb, E. V., Chun, M. M., & Phelps, E. A. (2016). Memory-guided attention: Independent contributions of the hippocampus and striatum. Neuron, 89(2), 317–324. https://doi.org/10.1016/j.neuron.2015.12.014
- Greene, A. J., Gross, W. L., Elsinger, C. L., & Rao, S. M. (2007). Hippocampal differentiation without recognition: An fMRI analysis of the contextual cueing task. Learning and Memory, 14(8), 548–553. http://doi.org/10.1101/lm.609807
- Günseli, E., & Aly, M. (2020). Preparation for upcoming attentional states in the hippocampus and medial prefrontal cortex. eLife, 9, e53191. https://doi.org/10.7554/eLife53191
- Hannula, D. E., & Ranganath, C. (2009). The eyes have it: Hippocampal activity predicts expression of memory in eye movements. Neuron, 63(5), 592–599. https://doi.org/10.1016/j.neuron.2009.08.025
- Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2006). A proposed function for hippocampal theta rhythm: Separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817. https://doi.org/10.1162/089976602317318965
- Hayden, B. Y., Nair, A. C., McCoy, A. N., & Platt, M. L. (2008). Posterior cingulate cortex mediates outcome-contingent allocation of behavior. Neuron, 60, 19–25. https://doi.org/10.1016/j.neuron.2008.09.012
- Hayden, B. Y., Smith, D. V., & Platt, M. L. (2009). Electrophysiological correlates of default-mode processing in macaque posterior cingulate cortex. Proceedings of the Natural Academy of Science USA, 106, 5948–5953. https://doi.org/10.1073/pnas.0812035106
- Henke, K. (2010). A model for memory systems based on processing modes rather than consciousness. Nature Review Neuroscience, 11(7), 523–532. http://doi.org/10.1038/nrn2850
- Hirsh, R. (1974). The hippocampus and contextual retrieval of information from memory: A theory. Behavioral Biology, 12(4), 421–444. https://doi.org/10.1016/S0091-6773(74)92231-7
- Hutchinson, J. B., Uncapher, M. R., Weiner, K. S., Bressler, D. W., Silver, M. A., Preston, A. R., & Wagner, A. D. (2014). Functional heterogeneity in posterior parietal cortex across attention and episodic memory retrieval. Cereberal Cortex, 24, 49–66. https://doi.org/10.1093/cercor/bhs278
- Jiang, Y. V., Sisk, C. A., & Toh, Y. N. (2019). Implicit guidance of attention in contextual cueing: Neuropsychological and developmental evidence. Neuroscience & Biobehavioral Reviews, 105, 115–125. https://doi.org/10.1016/j.neubiorev.2019.07.002
- Johnson, J. S., Woodman, G. F., Braun, E., & Luck, S. J. (2007). Implicit memory influences the allocation of attention in visual cortex. Psychonomic Bulletin and Review, 14(5), 834–839.
- Kam, J. W. Y., Lin, J. J., Solbakk, A., Endestad, T., Larsson, P. G., & Knight, R. T. (2019). Default network and frontoparietal control network theta connectivity supports internal attention. Nature Human Behaviour, 3, 1263–1270. https://doi.org/10.1038/s41562-019-0717-0
- Kasper, R.W. (2013). Knowing where to look: The role of memory, attention, and response processes when implicitly learned context facilitates visual search. (Unpublished doctoral dissertation). University of California, Santa Barbara.
- Kastner, S., & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. Annual Review of Neuroscience, 23, 315–341. https://doi.org/10.1146/annurev.neuro.23.1.315
- Konkel, A., & Cohen, N. J. (2009). Relational memory and the hippocampus: Representations and methods. Frontiers in Neuroscience, 3, 166–174. https://doi.org/10.3389/neuro.01.023.2009
- Kukolja, J., Thiel, C. M., & Fink, G. R. (2009). Cholinergic stimulation enhances neural activity associated with encoding but reduces neural activity associated with retrieval in humans. Journal of Neuroscience, 29(25), 8119–8128. https://doi.org/10.1523/JNEUROSCI.0203-09.2009
- Langner, R., & Eickhoff, S. (2013). Sustaining attention to simple tasks: A meta-analytic review of the neural mechanisms of vigilant attention. Psychological Bulletin, 139(4), 870–900. http://doi.org/10.1037/a0030694
- Law, J. R., Flanery, M. A., Wirth, S., Yanike, M., Smith, A. C., Frank, L. M., … Stark, C. E. (2005). Functional magnetic resonance imaging activity during the gradual acquisition and expression of paired-associate memory. Journal of Neuroscience, 25, 5720–5729. https://doi.org/10.1523/JNEUROSCI.4935-04.2005
- Leech, R., & Sharp, D. J. (2014). The role of the posterior cingulate cortex in cognition and disease. Brain, 137, 12–32. https://doi.org/10.1093/brain/awt162
- Manelis, A., & Reder, L. M. (2012). Procedural learning and associative memory mechanisms contribute to contextual cueing: Evidence from fMRI and eye-tracking. Learning and Memory, 19, 527–534. http://doi.org/10.1101/lm.025973.112
- Manginelli, A. A., Baumgartner, F. B., & Pollmann, S. (2013). Dorsal and ventral working memory-related brain areas support distinct processes in contextual cueing. NeuroImage, 67, 363–374. https://doi.org/10.1016/j.neuroimage.2012.11.025
- Manns, J. R., & Squire, L. R. (2001). Perceptual learning, awareness and the hippocampus. Hippocampus, 11(6), 776–782. https://doi.org/10.1002/hipo.1093
- Mesulam, M. M. (1999). Spatial attention and neglect: Parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philosophical Transactions of the Royal Society B: Biological Sciences, 354, 1325–1346. https://doi.org/10.1098/rstb.1999.0482
- Moscovitch, M. (2008). The hippocampus as a stupid, domain-specific module: Implications for theories of recent and remote memory, and of imagination. Canadian Journal of Experimental Psychology, 62(1), 62–79. http://doi.org/10.1037/1196-1961.62.1.62
- Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67, 105–134. http://doi.org/10.1146/annurev-psych-113011-143733
- Müller, V. I., Langner, R., Cieslik, E. C., Rottschy, C., & Eickhoff, S. B. (2015). Interindividual differences in cognitive flexibility: Influence of gray matter volume, functional connectivity and trait impulsivity. Brain Structure and Function, 220(4), 2401–2414. http://doi.org/10.1007/s00429-014-0797-6
- Myers, N. E., Stokes, M. G., & Nobre, A. C. (2017). Prioritizing information during working memory: Beyond sustained internal attention. Trends in Cognitive Science, 21(6), 449–461. https://doi.org/10.1016/j.tics.2017.03.010
- Negash, S., Petersen, L. E., Geda, Y. E., Knopman, D. S., Boeve, B. E., Smith, G. E., … Petersen, R. C. (2007). Effects of ApoE genotype and mild cognitive impairment on implicit learning. Neurobiology of Aging, 28(6), 885–893. http://doi.org/10.1016/j.neurobiolaging.2006.04.004
- Nelson, S. M., Cohen, A. L., Power, J. D., Wig, G. S., Miezin, F. M., Wheeler, M. E., … Petersen, S. E. (2010). A parcellation scheme for human left lateral parietal cortex. Neuron, 67, 156–170. https://doi.org/10.1016/j.neuron.2010.05.025
- Nobre, A. C. (2001). The attentive homunculus: Now you see it, now you don't. Neuroscience and Biobehavioral Reviews, 25(6), 477–496. https://doi.org/10.1016/S0149-7634(01)00028-8
- Nobre, A. C., Coull, J. T., & Frith, C. D. (2004). Orienting attention to locations in perceptual versus mental representations. Journal of Cognitive Neuroscience, 16(3), 363–373. http://doi.org/10.1162/089892904322926700
- Norman, K. A., & O'Reilly, R. C. (2003). Modeling hippocampal and neocortical contributions to recognition memory: A complementary-learning-systems approach. Psychological Review, 110(4), 611–646. http://doi.org/10.1037/0033-295x.110.4.611
- Olsen, R. K., Moses, S. N., Riggs, L., & Ryan, J. D. (2012). The hippocampus supports multiple cognitive processes through relational binding and comparison. Frontiers in Human Neuroscience, 6, 146. https://doi.org/10.3389/fnhum.2012.00146
- Olson, I. R., Chun, M. M., & Allison, T. (2001). Contextual guidance of attention: Human intracranial event-related potential evidence for feedback modulation in anatomically early temporally late stages of visual processing. Brain, 124(7), 1417–1425. https://doi.org/10.1093/brain/124.7.1417
- Paller, K. A., Kutas, M., & McIsaac, H. K. (1998). An electrophysiological measure of priming of visual word-form. Consciousness and Cognition, 7, 54–66. https://doi.org/10.1006/ccog.1998.0329
- Park, H., Quinlan, J., Thornton, E., & Reder, L. M. (2004). The effect of midazolam on visual search: Implications for understanding amnesia. Proceedings of the National Academy of Sciences of the United States of America, 101(51), 17879–17883. http://doi.org/10.1073/pnas.0408075101
- Patai, E. Z., Doallo, S., & Nobre, A. C. (2012). Long-term memories bias sensitivity and target selection in complex scenes. Journal of Cognitive Neuroscience, 24(12), 2281–2291. http://doi.org/10.1162/jocn_a_00294
- Pearson, J. M., Hayden, B. Y., Raghavachari, S., & Platt, M. L. (2009). Neurons in posterior cingulate cortex signal exploratory decisions in a dynamic multi-option choice task. Current Biology, 19(18), 1532–1537. https://doi.org/10.1016/j.cub.2009.07.048
- Petrides, M., & Pandya, D. N. (2002). Association pathways of the prefrontal cortex and functional observations. In D. T. Stuss & R. T. Knight (Eds.), Principles of frontal lobe function (pp. 31–50). New York, NY: Oxford University Press. http://doi.org/10.1093/acprof:oso/9780195134971.001.0001
- Pollmann, S., & Manginelli, A. A. (2009). Anterior prefrontal involvement in implicit contextual change detection. Frontiers in Human Neuroscience, 3(28), 1–13. http://doi.org/10.3389/neuro.09.028.200
- Pollmann, S., & Manginelli, A. A. (2010). Repeated contextual search cues lead to reduced BOLD-onset times in early visual and left inferior frontal cortex. The Open Neuroimaging Journal, 4, 9–15. https://doi.org/10.2174/1874440001004010009
- Pollmann, S., & Manginelli, A. A. (2016). Neural structures involved in visual search guidance by reward-enhanced contextual cueing of the target location. NeuroImage, 124, 887–897. https://doi.org/10.1016/j.neuroimage.2015.09.040
- Preston, A. R., & Gabrieli, J. D. E. (2008). Dissociation between explicit memory and configural memory in the human medial temporal lobe. Cerebral Cortex, 18(9), 2192–2207. https://doi.org/10.1093/cercor/bhm245
- Ptak, R. (2012). The frontoparietal attention network of the human brain: Action, saliency, and a priority map of the environment. The Neuroscientist, 18(5), 502–515. http://doi.org/10.1177/1073858411409051
- Ptak, R., Schnider, A., & Fellrath, J. (2017). The dorsal frontoparietal network: A core system for emulated action. Trends in Cognitive Sciences, 21(8), 589–599. https://doi.org/10.1016/j.tics.2017.05.002
- Radua, J., & Mataix-Cols, D. (2012). Meta-analytic methods for neuroimaging data explained. Biology of Mood & Anxiety Disorders, 2, 6. https://doi.org/10.1186/2045-5380-2-6
- Roediger, H. L., III, Weldon, M. S., & Challis, B. H. (1989). Explaining dissociations between implicit and explicit measures of retention: A processing account. In H. L. Roediger & F. I. M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 3–41). Hillsdale, NJ: Erlbaum.
- Romero, K., & Moscovitch, M. (2015). Amnesia: General. In International encyclopedia of the social and behavioral sciences ( 2nd ed.). UK: Elsevier Ltd.
- Rosen, M., Stern, C., Michalka, S., Devaney, K., & Somers, D. (2015). Cognitive control network contributions to memory-guided visual attention. Cerebral Cortex, 26(5), 2059–2073. http://doi.org/10.1093/cercor/bhv028
- Rosen, M. L., Stern, C. E., Devaney, K. J., & Somers, D. C. (2018). Cortical and subcortical contributions to long-term memory-guided visuospatial attention. Cerebral Cortex, 28, 2935–2947. https://doi.org/10.1093/cercor/bhx172
- Rottschy, C., Langner, R., Dogan, I., Reetz, K., Laird, A. R., Schulz, J. B., … Eickhoff, S. B. (2012). Modelling neural correlates of working memory: A coordinate- based meta-analysis. NeuroImage, 60, 830–846. https://doi.org/10.1016/j.neuroimage.2011.11.050
- Ryan, J. D., Althoff, R. A., Whitlow, S., & Cohen, N. J. (2000). Amnesia is a deficit in relational memory. Psychological Science, 11(6), 454–461. https://doi.org/10.1111/1467-9280.00288
- Schacter, D. L., Bowers, J., & Booker, J. (1989). Intention, awareness, and implicit memory: The retrieval intentionality criterion. In S. Lewandowsky, J. C. Dunn, & K. Kirsner (Eds.), Implicit memory: Theoretical issues (pp. 47–65). Hillsdale, NJ: Erlbaum.
- Schacter, D. L., Dobbins, I. G., & Schnyer, D. M. (2004). Specificity of priming: A cognitive neuroscience perspective. Nature Reviews Neuroscience, 5, 853–862. http://doi.org/10.1038/nrn1534
- Schankin, A., Hagemann, D., & Schubö, A. (2011). Is contextual cueing more than the guidance of visual-spatial attention? Biological Psychology, 87(1), 58–65. https://doi.org/10.1016/j.biopsycho.2011.02.003
- Schankin, A., & Schubö, A. (2009). Cognitive processes facilitated by contextual cueing: Evidence from event-related brain potentials. Psychophysiology, 46(3), 668–679. https://doi.org/10.1111/j.1469-8986.2009.00807.x
- Schankin, A., & Schubö, A. (2010). Contextual cueing effects despite spatially cued target locations. Psychophysiology, 47(4), 717–727. https://doi.org/10.1111/j.1469-8986.2010.00979.x
- Sestieri, C., Shulman, G. L., & Corbetta, M. (2010). Attention to memory and the environment: Functional specialization and dynamic competition in human posterior parietal cortex. Journal of Neuroscience, 30, 8445–8456. https://doi.org/10.1523/JNEUROSCI.4719-09.2010
- Shomstein, S., & Yantis, S. (2004). Control of attention shifts between vision and audition in human cortex. Journal of Neuroscience, 24, 10702–10706. https://doi.org/10.1523/JNEUROSCI.2939-04.2004
- Shomstein, S., & Yantis, S. (2006). Parietal cortex mediates voluntary control of spatial and nonspatial auditory attention. Journal of Neuroscience, 26, 435–439. https://doi.org/10.1523/jneurosci.4408-05.2006
- Spreng, R. N. (2012). The fallacy of a "task-negative" network. Frontiers in Psychology, 3, 145. https://doi.org/10.3389/fpsyg.2012.00145
- Spreng, R. N., Sepulcre, J., Turner, G. R., Stevens, W. D., & Schacter, D. L. (2013). Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience, 25, 74–86. https://doi.org/10.1162/jocn_a_00281
- St Jacques, P. L., Kragel, P. A., & Rubin, D. C. (2011). Dynamic neural networks supporting memory retrieval. NeuroImage, 57(2), 608–616. https://doi.org/10.1016/j.neuroimage.2011.04.039
- Stokes, M. G., Atherton, K., Patai, E. Z., & Nobre, A. C. (2012). Long-term memory prepares neural activity for perception. Proceedings of the National Academy of Sciences of the United States of America, 109(6), E360–E367. https://doi.org/10.1073/pnas.1108555108
- Summerfield, J. J., Lepsien, J., Gitelman, D. R., Mesulam, M. M., & Nobre, A. C. (2006). Orienting attention based on long-term memory experience. Neuron, 49(6), 905–916. http://doi.org/10.1016/j.neuron.2006.01.021
- Summerfield, J. J., Rao, A., Garside, N., & Nobre, A. C. (2011). Biasing perception by spatial long-term memory. The Journal of Neuroscience, 31(42), 14952–14960. https://doi.org/10.1523/JNEUROSCI.5541-10.2011
- Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain: 3-dimensional proportional system: An approach to cerebral imaging. New York: Thieme Medical Publishers, Inc. https://doi.org/10.1017/S0022215100111879
- Taylor, B. J., Killick, C., & McGlade, A. (2015). Understanding and using research in social work. Los Angeles, CA: Learning Matters.
- Treves, A. (2004). Computational constraints between retrieving the past and predicting the future, and the CA3–CA1 differentiation. Hippocampus, 14(5), 539–556. https://doi.org/10.1002/hipo.10187
- Turkeltaub, P. E., Eickhoff, S. B., Laird, A. R., Fox, M., Wiener, M., & Fox, P. (2012). Minimizing within-experiment and within-group effects in activation likelihood estimation meta-analyses. Human Brain Mapping, 33(1), 1–13. http://doi.org/10.1002/hbm.21186
- Vilberg, K. L., & Rugg, M. D. (2009). Left parietal cortex is modulated by amount of recollected verbal information. Neuroreport, 20(14), 1295–1299. https://doi.org/10.1097/WNR.0b013e3283306798
- Vincent, J. L., Kahn, I., Snyder, A. Z., Raichle, M. E., & Buckner, R. L. (2008). Evidence for a frontoparietal control system revealed by intrinsic functional connectivity. Journal of Neurophysiology, 100(6), 3328–3342. https://doi.org/10.1152/jn.90355.2008
- Voss, J. L., Galvan, A., & Gonsalves, B. D. (2011). Cortical regions recruited for complex active-learning strategies and action planning exhibit rapid reactivation during memory retrieval. Neuropsychologia, 49, 3956–3966. http://doi.org/10.1016/j.neuropsychologia.2011.10.012
- Voss, J. L., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Hippocampal brain-network coordination during volitional exploratory behavior enhances learning. Nature Neuroscience, 14, 115–120. http://doi.org/10.1038/nn.2693
- Voss, J. L., Warren, D. E., Gonsalves, B. D., Federmeier, K. D., Tranel, D., & Cohen, N. J. (2011). Spontaneous revisitation during visual exploration as a link among strategic behavior, learning, and the hippocampus. Proceedings of the National Academy of Sciences of the United States of America, 108(31), E402–E409. http://doi.org/10.1073/pnas.1100225108
- Wagner, A. D., Shannon, B. J., Kahn, I., & Buckner, R. L. (2005). Parietal lobe contributions to episodic memory retrieval. Trends in Cognitive Sciences, 9, 445–453. https://doi.org/10.1016/j.tics.2005.07.001
- Wang, J. X., & Voss, J. L. (2014). Brain networks for exploration decisions utilizing distinct modeled information types during contextual learning. Neuron, 82(5), 1171–1182. https://doi.org/10.1016/j.neuron.2014.04.028
- Westerberg, C., Miller, B. B., Reber, P. J., Cohen, N. J., & Paller, K. A. (2011). Neural correlates of contextual cueing are modulated by explicit learning. Neuropsychologia, 49(12), 3439–3447. http://doi.org/10.1016/j.neuropsychologia.2011.08.019
- Yantis, S., Schwarzbach, J., Serences, J. T., Carlson, R. L., Steinmetz, M. A., Pekar, J. J., & Courtney, S. M. (2002). Transient neural activity in human parietal cortex during spatial attention shifts. Nature Neuroscience, 5, 995–1002. https://doi.org/10.1038/nn921
- Yeo, B. T. T., Krienen, F. M., Sepulcre, J., Sabuncu, M. R., Lashkari, D., Hollinshead, M., … Buckner, R. L. (2011). The organization of the human cerebral cortex estimated by intrinsic functional connectivity. Journal of Neurophysiology, 106(3), 1125–1165. https://doi.org/10.1152/jn.00338.2011
- Zarahn, E., Aguirre, G., & D'Esposito, M. (2000). Replication and further studies of neural mechanisms of spatial mnemonic processing in humans. Cognitive Brain Research, 9(1), 1–17. https://doi.org/10.1016/s0926-6410(99)00033-6
- Zimmermann, J., Ross, B., Moscovitch, M., & Alain, C. (2020). Neural dynamics supporting auditory long-term memory effects on target detection. NeuroImage, 218, 116979. https://doi.org/10.1016/j.neuroimage.2020.116979
- Zimmermann, J. F., Alain, C., & Butler, C. (2019). Impaired memory-guided attention in asymptomatic APOE4 carriers. Scientific Reports, 9(8138), 1–14. https://doi.org/10.1038/s41598-019-44471-1