Phenotyping the kinematics of leaf development in flowering plants: recommendations and pitfalls
Maryline Lièvre
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
These authors equally contributed to the article.Search for more papers by this authorNathalie Wuyts
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
These authors equally contributed to the article.Search for more papers by this authorSarah J. Cookson
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRA, UMR 1287, Villenave d'Ornon, France
These authors equally contributed to the article.Search for more papers by this authorJustine Bresson
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Laboratory of Tropical and Mediterranean Symbioses (UMR113), Université Montpellier 2, IRD, Cirad Supagro, INRA, Université Montpellier 2, CC002, Place E. Bataillon, Montpellier, France
These authors equally contributed to the article.Search for more papers by this authorMélanie Dapp
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Laboratory of Plant Genetics Sciences III, Geneva 4, Switzerland
These authors equally contributed to the article.Search for more papers by this authorFrançois Vasseur
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorCatherine Massonnet
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Ecologie et Ecophysiologie Forestières, UMR 1137 INRA/UL, Champenoux, France
Search for more papers by this authorSébastien Tisné
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorMathilde Bettembourg
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorCrispulo Balsera
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorAlexis Bédiée
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorFrédéric Bouvery
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorMyriam Dauzat
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorGaëlle Rolland
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorDenis Vile
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorCorresponding Author
Christine Granier
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Correspondence to: [email protected]Search for more papers by this authorMaryline Lièvre
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
These authors equally contributed to the article.Search for more papers by this authorNathalie Wuyts
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
VIB Department of Plant Systems Biology, Ghent University, Gent, Belgium
These authors equally contributed to the article.Search for more papers by this authorSarah J. Cookson
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Ecophysiologie et Génomique Fonctionnelle de la Vigne, INRA, UMR 1287, Villenave d'Ornon, France
These authors equally contributed to the article.Search for more papers by this authorJustine Bresson
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Laboratory of Tropical and Mediterranean Symbioses (UMR113), Université Montpellier 2, IRD, Cirad Supagro, INRA, Université Montpellier 2, CC002, Place E. Bataillon, Montpellier, France
These authors equally contributed to the article.Search for more papers by this authorMélanie Dapp
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Laboratory of Plant Genetics Sciences III, Geneva 4, Switzerland
These authors equally contributed to the article.Search for more papers by this authorFrançois Vasseur
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorCatherine Massonnet
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Ecologie et Ecophysiologie Forestières, UMR 1137 INRA/UL, Champenoux, France
Search for more papers by this authorSébastien Tisné
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorMathilde Bettembourg
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorCrispulo Balsera
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorAlexis Bédiée
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorFrédéric Bouvery
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorMyriam Dauzat
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorGaëlle Rolland
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorDenis Vile
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Search for more papers by this authorCorresponding Author
Christine Granier
Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
Correspondence to: [email protected]Search for more papers by this authorConflict of interest: The authors have declared no conflicts of interest for this article.
Abstract
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype. WIREs Dev Biol 2013, 2:809–821. doi: 10.1002/wdev.119
This article is categorized under:
- Plant Development > Vegetative Development
Supporting Information
Filename | Description |
---|---|
wdev119-sup-0001-Supplemental_Data.docxWord 2007 document , 33.2 KB | Supporting Information |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- 1Boyes DC, Zayed AM, Ascenzi R, McCaskill AJ, Hoffman NE, Davis KR, Gorlach J. Growth stage-based phenotypic analysis of Arabidopsis: a model for high throughput functional genomics in plants. Plant Cell 2001, 13: 1499–1510.
- 2Fournier C, Durand JL, Ljutovac S, Schäufele R, Gastal F, Andrieu A. Functional-structural model of elongation of the grass leaf and its relationships with the phyllochron. New Phytol 2005, 166: 881–894.
- 3Wuyts N, Palauqui JC, Conejero G, Verdeil JL, Granier C, Massonnet C. High-contrast three-dimensional imaging of the Arabidopsis leaf enables the analysis of cell dimensions in the epidermis and mesophyll. Plant Methods 2010.
- 4Pyke KA, Marisson JL, Leech RM. Temporal and spatial development of the cells of the expanding first leaf of Arabidopsis thaliana (L.) Heynh. J Exp Bot 1991, 42: 1407–1416.
- 5Koornneef M, Hanhart CJ, van der Veen JH. A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol Gen Genet 1991, 2298: 57–66.
- 6Mendez-Vigo B, Teresa de Andres M, Ramiro M, Martinez-Zapater JM, Alonso-Blanco C. Temporal analysis of natural variation for the rate of leaf production and its relationship with flowering initiation in Arabidopsis thaliana. J Exp Bot 2010, 61: 1611–1623.
- 7Franks SJ. Plasticity and evolution in drought avoidance and escape in the annual plant Brassica rapa. New Phytol 2011, 190: 249–257.
- 8Itoh Y, Shimizu H. Phyllochron dynamics during the course of late shoot development might be affected by reproductive development in rice (Oryza sativa L ). Dev Genes Evol 2012, 222: 341–350.
- 9Beemster GTS, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inzé D. Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 2005, 138: 734–743.
- 10Granier C, Tardieu F. Spatial and temporal analyses of expansion and cell cycle in sunflower leaves. A common pattern of development for all zones of a leaf and different leaves of a plant. Plant Physiol 1998, 116: 991–1001.
- 11Granier C, Tardieu F. Multi-scale phenotyping of leaf expansion in response to environmental changes: the whole is more than the sum of parts. Plant Cell Environ 2009, 32: 1175–1184.
- 12Dosio GAA, Rey H, Lecoeur J, Izquierdo NG, Aguirrezábal LAN, Tardieu F, Turc O. A whole plant analysis of the dynamics of expansion of individual leaves of two sunflower hybrids. J Exp Bot 2003, 54: 2541–2552.
- 13Cookson SJ, Chenu K, Granier C. Day-length affects the dynamics of leaf expansion and cellular development in Arabidopsis thaliana partially through floral transition timing. Ann Bot 2007, 99: 703–711.
- 14Donnelly PM, Bonetta D, Tsukaya H, Dengler RE, Dengler NG. Cell cycling and cell enlargement in developing leaves of Arabidopsis. Dev Biol 1999, 215: 407–419.
- 15Cockcroft CE, den Boer BG, Healy JM, Murray JA. Cyclin D control of growth rate in plants. Nature 2000, 405: 575–579.
- 16Horiguch G, Ferjani A, Fujikura U, Tsukaya H. Coordination of cell proliferation and cell expansion in the control of leaf size in Arabidopsis thaliana. J Plant Res 2006, 119: 37–42.
- 17Johnson K, Lenhard M. Genetic control of plant organ growth. New Phytol 2011, 191: 319–333.
- 18Gonzalez N, Vanhaeren H, Inzé D. Leaf size control: complex coordination of cell division and expansion. Trends Plant Sci 2012, 17: 332–340.
- 19Bernstein N, Silk WK, Läuchli A. Growth and development of sorghum leaves under conditions of NaCl stress. Planta 1993, 191: 433–439.
- 20Granier C, Inzé D, Tardieu F. Spatial distribution of cell division rate can be deduced from that of p34cdc2 kinase activity in maize leaves grown at contrasting temperatures and soil water conditions. Plant Physiol 2000, 124: 1393–1412.
- 21De Veylder L, Beeckman T, Beemster GTS, Krols L, Terras F, Landrieu I, Van Der Schueren E, Maes S, Naudts M, Inzé D. Functional analysis of cyclin-dependent kinase inhibitors of Arabidopsis. Plant Cell 2001, 13: 1653–1667.
- 22Cookson SJ, Van Lijsebettens M, Granier C. Correlation between leaf growth variables suggests intrinsic and early controls of leaf size in Arabidopsis thaliana. Plant Cell Environ 2005, 28: 1355–1366.
- 23Beemster GT, De Veylder L, Vercruysse S, West G, Rombaut D, Van Hummelen P, Galichet A, Gruissem W, Inzé D, Vuylsteke M. Genome-wide analysis of gene expression profiles associated with cell cycle transitions in growing organs of Arabidopsis. Plant Physiol 2005, 138: 734–743.
- 24Fiorani F, Beemster GTS. Quantitative analyses of cell division in plant meristems. Plant Mol Biol 2006, 60: 963–979.
- 25Baerenfaller K, Massonnet C, Walsh S, Baginsky S, Bühlmann P, Hennig L, Hirsch-Hoffmann M, Howell KA, Kahlau S, Radziejwoski A, et al. Systems-based analysis of Arabidopsis leaf growth reveals adaptation to water deficit. Mol Sys Biol 2012, 8: 606.
- 26Granier C, Aguirrezabal L, Chenu K, Cookson SJ, Dauzat M, Hamard P, Thioux JJ, Rolland G, Bouchier-Combaud S, Lebaudy A, et al. PHENOPSIS, an automated platform for reproducible phenotyping of plant responses to soil water deficit in Arabidopsis thaliana permitted the identification of an accession with low sensitivity to soil water deficit. New Phytol 2006, 169: 623–635.
- 27Walter A, Scharr H, Gilmer F, Zierer R, Nagel KA, Ernst M, Wiese A, Virnich O, Christ MM, Uhlig B, et al. Dynamics of seedling growth acclimation towards altered light conditions can be quantified via GROWSCREEN: a setup and procedure designed for rapid optical phenotyping of different plant species. New Phytol 2007, 174: 447–455.
- 28Sadok W, Naudin P, Boussuge B, Muller B, Welcker C, Tardieu F. Leaf growth rate per unit thermal time follows QTL-dependent daily patterns in hundreds of maize lines under naturally fluctuating conditions. Plant Cell Environ 2007, 30: 135–146.
- 29Arvidsson S, Pérez-Rodríguez P, Mueller-Roeber B. A growth phenotyping pipeline for Arabidopsis thaliana integrating image analysis and rosette area modeling for robust quantification of genotype effects. New Phytol 2011, 191: 895–907.
- 30Fiorani F, Rascher U, Jahnke S, Schurr U. Imaging plants dynamics in heterogenic environments. Curr Opin Biotechnol 2012, 23: 127–286.
- 31Zhang X, Hause RJ, Borevitz JO. Natural genetic variation for growth and development revealed by high-throughput phenotyping in Arabidopsis thaliana. G3 (Bethesda) 2012, 2: 29–34.
- 32Skirycz A, Vandenbroucke K, Clauw P, Maleux K, De Meyer B, Dhondt S, Pucci A, Gonzalez N, Hoeberichts F, Tognetti VB, et al. Survival and growth of Arabidopsis plants given limited water are not equal. Nat Biotechnol 2011, 29: 212–214.
- 33Alonso JM, Stepanova AN, Leisse TJ, Kim CJ, Chen H, Shinn P, Stevenson DK, Zimmerman J, Barajas P, Cheuk R, et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 2003, 301: 653–657.
- 34Koornneef M, Meinke D. The development of Arabidopsis as a model plant. Plant J 2010, 61: 909–21.
- 35Leister D, Varotto C, Pesaresi P, Niwergall A, Salamini F. Large-scale evaluation of plant growth in Arabidopsis thaliana by non-invasive image analysis. Plant Physiol Biochem 1999, 37: 671–678.
- 36Jansen M, Gilmer F, Biskup B, Nagel KA, Rascher U, Fischbach A, Briem S, Dreissen G, Tittmann S, Braun S, et al. Simultaneous phenotyping of leaf growth and chlorophyll fluorescence via GROWSCREEN FLUORO allows detection of stress tolerance in Arabidopsis thaliana and other rosette plants. Funct Plant Biol 2009, 36: 902–914.
- 37Millenaar FF, Cox MCH, de Jong van Berkel YEM, Welschen RAM, Pierik R, Voesenek LACJ, Peeters AJM. Ethylene-induced differential growth of petioles in Arabidopsis thaliana; analyzing natural variation, response kinetics and regulation. Plant Physiol 2005, 137: 998–1008.
- 38Mullen JL, Weinig C, Hangarter RP. Shade avoidance and the regulation of leaf inclination in Arabidopsis. Plant Cell Environ 2006, 29: 1099–1106.
- 39Wiese A, Christ MM, Virnich O, Schurr U, Walter A. Spatio-temporal leaf growth patterns of Arabidopsis thaliana and evidence for sugar control of the diel leaf growth cycle. New Phytol 2007, 174: 752–761.
- 40Dornbusch T, Lorrain S, Kuznetsov D, Fortier A, Liechti R, Xenarios I, Fankhauser C. Measuring the diurnal pattern of leaf hyponasty and growth in Arabidopsis—a novel phenotyping approach using laser scanning. Funct Plant Biol 2012, 39: 860–869.
- 41Vasseur F, Pantin F, Vile D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. Plant Cell Environ 2011, 34: 1563–1579.
- 42Pérez-Pérez JM, Serrano-Cartagena J, Micol JL. Genetic analysis of natural variations in the architecture of Arabidopsis thaliana vegetative leaves. Genetics 2002, 162: 893–915.
- 43Tisné S, Reymond M, Vile D, Fabre J, Dauzat M, Koornneef M, Granier C. Combined genetic and modeling approaches reveal that epidermal cell area and number in leaves are controlled by leaf and plant developmental processes in Arabidopsis. Plant Physiol 2008, 148: 1117–1127.
- 44Ghandilyan A, Barboza L, Tisné S, Granier C, Reymond M, Koornneef M, Schat H, Aarts MGM. Genetic analysis identifies quantitative trait loci controlling rosette mineral concentrations in Arabidopsis thaliana under drought. New Phytol 2009, 184: 180–192.
- 45Pérez-Pérez JM, Rubio-Díaz S, Dhondt S, Hernández-Romero D, Sánchez-Soriano J, Beemster GT, Ponce MR, Micol JL. Whole organ, venation and epidermal cell morphological variations are correlated in the leaves of Arabidopsis mutants. Plant Cell Environ 2011, 34: 2200–2211.
- 46Massonnet C, Tisné S, Radziejwoski A, Vile D, de Veylder L, Dauzat M, Granier C. New insights into the control of endoreduplication: endoreduplication is driven by organ growth in Arabidopsis leaves. Plant Physiol 2011, 157: 2044–2055.
- 47Varotto C, Pesaresi P, Meurer J, Oelmuller R, Steiner-Lange S, Salamini F, Leister D. Disruption of the Arabidopsis photosystem I gene psaE1 affects photosynthesis and impairs growth. Plant J 2000, 22: 115–124.
- 48Berná G, Robles P, Micol JL. A mutational analysis of leaf morphogenesis in Arabidopsis thaliana. Genetics 1999, 152: 729–742.
- 49Serrano-Cartagena J, Robles P, Ponce MR, Micol JL. Genetic analysis of leaf form mutants from the Arabidopsis Information Service collection. Mol Gen Genet 1999, 261: 725–739.
- 50Juenger TE, Mckay JK, Hausmann N, Keurentjes JJB, Sen S, et al. Identification and characterization of QTL underlying whole-plant physiology in Arabidopsis thaliana: δ13C, stomatal conductance and transpiration efficiency. Plant Cell Environ 2005, 28: 697–708.
- 51Micol JL. Leaf development: time to turn over a new leaf? Curr Opin Plant Biol 2009, 12: 9–16.
- 52El-Lithy ME, Clerkx EJM, Ruys GJ, Koornneef M, Vreugdenhil D. Quantitative trait locus analysis of growth-related traits in a new Arabidopsis recombinant inbred population. Plant Physiol 2004, 135: 444–458.
- 53Vasseur F, Violle C, Enquist BJ, Granier C, Vile D. A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry. Ecol Lett 2012, 15: 1149–1157.
- 54Roff DA. Contributions of genomics to life-history theory. Nat Rev Genet 2007, 8: 116–125.
- 55Metcalf CJ, Mitchell-Olds T. Life history in a model system: opening the black box with Arabidopsis thaliana. Ecol Lett 2009, 12: 593–600.
- 56Tsoularis A. Analysis of logistic growth models. Res Lett Inf Math Sci 2001, 2: 23–46.
- 57Vanhaeren H, Gonzalez N, Inzé D. Hide and seek: uncloaking the vegetative shoot apex of Arabidopsis thaliana. Plant J 2010, 63: 541–548.
- 58Clark SE, Running MP, Meyerowitz EM. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. Development 1995, 121: 2057–2067.
- 59Brink RA. Phase change in higher plants and somatic cell heredity. Q Rev Biol 1962, 37: 1–22.
- 60Poethig RS. Phase change and the regulation of shoot morphogenesis in plants. Science 1990, 250: 923–930.
- 61Lawson EJR, Poethig RS. Shoot development in plants: Time for a change. Trends Genet 1995, 11: 263–268.
- 62Telfer A, Bollman KM, Poethig RS. Phase change and the regulation of trichome distribution in Arabidopsis thaliana. Development 1997, 124: 645–654.
- 63Kerstetter RA, Poethig RS. The specification of leaf identity during shoot development. Annu Rev Cell Dev Biol 1998, 14: 373–398.
- 64Willmann MR, Poethig RS. The effect of the floral repressor FLC on the timing and progression of vegetative phase change in Arabidopsis. Development 2011, 138: 677–685.
- 65Wu G, Poethig RS. Temporal regulation of shoot development in Arabidopsis thaliana by miR156 and its target SPL3. Development 2006, 133: 3539–3547.
- 66Wang JW, Schwab R, Czech B, Mica E, Weigel D. Dual effects of miR156-targeted SPL genes and CYP78A5/KLUH on plastochron length and organ size in Arabidopsis thaliana. Plant Cell 2008, 20: 1231–1243.
- 67Usami T, Horiguchi G, Yano S, Tsukaya H. The more and smaller cells mutants of Arabidopsis thaliana identify novel roles for SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes in the control of heteroblasty. Development 2009, 136: 955–964.
- 68Cnops G, Jover-Gil S, Peters J, Neyt P, De Block S, Robles P, Ponce MR, Gerats T, Micol JL, Van Lijsebettens M. The rotunda2 mutants identity a role for the LEUNIG gene in vegetative leaf morphogenesis. J Exp Bot 2004, 55: 1529–1539.
- 69Rymen B, Coppens F, Dhondt S, Fiorani F, Beemster GT. Kinematic analysis of cell division and expansion. Methods Mol Biol 2010, 655: 203–227.
- 70Horiguchi G, Fujikura U, Ferjani A, Ishikawa N, Tsukaya H. Large-scale histological analysis of leaf mutants using two simple leaf observation methods: identification of novel genetic pathways governing the size and shape of leaves. Plant J 2006, 48: 638–644.
- 71Sterken R, Kiekens R, Boruc J, Zhang F, Vercauteren A, Vercauteren I, De Smet L, Dhondt S, Inzé D, De Veylder L, et al. Combined linkage and association mapping reveals CYCD5;1 as a quantitative trait gene for endoreduplication in Arabidopsis. Proc Natl Acad Sci USA 2012, 109: 4678–4683.
- 72Savaldi-Goldstein S, Chory J. Growth coordination and the shoot epidermis. Curr Opin Plant Biol 2008, 11: 42–48.
- 73González-Bayón R, Kinsman EA, Quesada V, Vera A, Robles P, Ponce MR, Pyke KA, Micol JL. Mutations in the RETICULATA gene dramatically alter internal architecture but have little effect on overall organ shape in Arabidopsis leaves. J Exp Bot 2006, 57: 3019–3031.
- 74Tisné S, Barbier F, Granier C. The ERECTA gene controls spatial and temporal patterns of epidermal cell number and size in successive developing leaves of Arabidopsis thaliana. Ann Bot 2011, 108: 159–168.
- 75Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, et al. Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 2012, 193-194: 70–84.
- 76Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: Global convergence in plant functioning. Proc Natl Acad Sci USA 1997, 94: 13730–13734.
- 77Wright IJ, Reich PB, Westoby M, Ackerly DD, Baruch Z, Bongers F, Cavender-Bares J, Chapin T, Cornelissen JHC, Diemer M, et al. The worldwide leaf economics spectrum. Nature 2004, 428: 821–827.
- 78Green PB. Growth and cell pattern formation on an axis: critique of concepts, terminology, and mode of study. Bot Gaz 1976, 137: 187–202.
- 79Erickson O. Modelling of plant growth. Annu Rev Plant Physiol 1976, 27: 407–434.
- 80Poethig RS, Sussex IM. The developmental morphology and growth dynamics of the tobacco leaf. Planta 1985, 165: 158–169.
- 81Silk WK, Erickson RO. Kinematics of plant growth. J Theor Biol 1979, 76: 481–501.
- 82Silk WK. Quantitative descriptions of development. Annu Rev Plant Physiol 1984, 35: 479–518.
- 83Bertrand H, Nalin R, Bally R, Cleyet-Marel JC. Isolation and identification of the most efficient plant growth-promoting bacteria associated with canola (Brassica napus). Biol Fertil Soils 2001, 33: 152–156.
- 84Mantelin S, Desbrosses G, Larcher M, Tranbarger TJ, Cleyet-Marel JC, Touraine B. Nitrate-dependent control of root architecture and N nutrition are altered by a plant growth-promoting Phyllobacterium sp. Planta 2006, 223: 591–603.