Frequent item set mining
Corresponding Author
Christian Borgelt
European Centre for Soft Computing, Edificio de Investigación, Calle Gonzalo Gutiérrez Quirós s/n, Mieres, Asturias, Spain
European Centre for Soft Computing, Edificio de Investigación, Calle Gonzalo Gutiérrez Quirós s/n, Mieres, Asturias, Spain. WWW: http://www.borgelt.net/, http://www.softcomputing.es/Search for more papers by this authorCorresponding Author
Christian Borgelt
European Centre for Soft Computing, Edificio de Investigación, Calle Gonzalo Gutiérrez Quirós s/n, Mieres, Asturias, Spain
European Centre for Soft Computing, Edificio de Investigación, Calle Gonzalo Gutiérrez Quirós s/n, Mieres, Asturias, Spain. WWW: http://www.borgelt.net/, http://www.softcomputing.es/Search for more papers by this authorAbstract
Frequent item set mining is one of the best known and most popular data mining methods. Originally developed for market basket analysis, it is used nowadays for almost any task that requires discovering regularities between (nominal) variables. This paper provides an overview of the foundations of frequent item set mining, starting from a definition of the basic notions and the core task. It continues by discussing how the search space is structured to avoid redundant search, how it is pruned with the a priori property, and how the output is reduced by confining it to closed or maximal item sets or generators. In addition, it reviews some of the most important algorithmic techniques and data structures that were developed to make the search for frequent item sets as efficient as possible. © 2012 Wiley Periodicals, Inc.
This article is categorized under:
- Algorithmic Development > Association Rules
- Application Areas > Data Mining Software Tools
- Technologies > Association Rules
REFERENCES
- 1
Agrawal R,
Srikant R.
Fast algorithms for mining association rules. In:
Proceedings of the 20th International Conference on Very Large Databases (VLDB 1994; Santiago de, Chile).
San Mateo, CA:
Morgan Kaufmann;
1994,
487–499.
- 2
Agrawal R,
Mannila H,
Srikant R,
Toivonen H,
Verkamo A.
Fast discovery of association rules. In:
Advances in Knowledge Discovery and Data Mining.
Cambridge, CA: AAAI Press/MIT Press;
1996,
307–328.
- 3
Zaki MJ,
Parthasarathy S,
Ogihara M,
Li W.
New algorithms for fast discovery of association rules. In: Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining (KDD 1997; Newport Beach, CA). Menlo Park, CA: AAAI Press;
1997,
283–296.
- 4
Zaki MJ,
Gouda K.
Fast vertical mining using diffsets. In: Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2003; Washington, DC). New York: ACM Press;
2003,
326–335.
- 5
Schmidt-Thieme L.
Algorithmic features of Eclat. In: Proceedings of the Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 6
Han J,
Pei J,
Yin Y.
Mining frequent patterns without candidate generation. In: Proceedings of the 19th ACM International Conference on Management of Data (SIGMOD 2000; Dallas, TX). New York, NY: ACM Press;
2000,
1–12.
- 7
Grahne G,
Zhu J.
Efficiently using prefix-trees in mining frequent itemsets. In: Proceedings of the Workshop Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 8
Rácz B.
Nonordfp: an FP-growth variation without rebuilding the FP-tree. In: Proceedings of the 2nd International Workshop on Frequent Itemset Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2003.
- 9
Grahne G,
Zhu J.
Reducing the main memory consumptions of Fpmax* and FPclose. In: Proceedings of the Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 10
Uno T,
Asai T,
Uchida Y,
Arimura H.
LCM: an efficient algorithm for enumerating frequent closed item sets. In: Proceedings of the Workshop on Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). TU Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 11
Uno T,
Kiyomi M,
Arimura H.
LCM ver. 2: efficient mining algorithms for frequent/closed/maximal itemsets. In: Proceedings of the Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 12
Uno T,
Kiyomi M,
Arimura H.
LCM ver. 3: collaboration of array, bitmap and prefix tree for frequent itemset mining. In: Proceedings of the 1st Open Source Data Mining on Frequent Pattern Mining Implementations (OSDM 2005; Chicago, IL). New York, NY: ACM Press;
2005,
77–86.
- 13
Gerstein GL,
Perkel DH,
Subramanian KN.
Identification of functionally related neural assemblies.
Brain Res
1978,
140: 43–62.
- 14
Bayardo RJ.
Efficiently mining long patterns from databases. In: Proceedings of the ACM International Conference Management of Data (SIGMOD 1998; Seattle, WA). New York, NY: ACM Press;
1998,
85–93.
- 15
Lin D-I,
Kedem ZM.
Pincer-search: a new algorithm for discovering the maximum frequent set. In: Proceedings of the 6th International Conference on Extending Database Technology (EDBT 1998; Valencia, Spain). Heidelberg, Germany: Springer-Verlag;
1998,
103–119.
- 16
Agrawal RC,
Aggarwal CC,
Prasad VVV.
Depth first generation of long patterns. In: Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2000; Boston, MA). New York, NY: ACM Press;
2000,
108–118.
- 17
Aggarwal CC.
Towards long pattern generation in dense databases.
SIGKDD Explor
2001,
3: 20–26.
- 18
Burdick D,
Calimlim M,
Gehrke J.
MAFIA: a maximal frequent itemset algorithm for transactional databases. In: Proceedings of the 17th International Conference on Data Engineering (ICDE 2001; Heidelberg, Germany). Piscataway, NJ: IEEE Press;
2001,
443–452.
- 19
Pasquier N,
Bastide Y,
Taouil R,
Lakhal L.
Discovering frequent closed itemsets for association rules. In: Proceedings of the 7th International Conference on Database Theory (ICDT 1999; Jerusalem, Israel). London, United Kingdom: Springer-Verlag;
1999,
398–416.
- 20
Bastide Y,
Taouil R,
Pasquier N,
Stumme G,
Lakhal L.
Mining frequent patterns with counting inference.
SIGKDD Explor
2002,
2: 66–75.
- 21
Zaki MJ.
Generating non-redundant association rules. In: Proceedings of the 6th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2000, Boston, MA). New York, NY: ACM Press;
2000,
34–43.
- 22
Cristofor D,
Cristofor L,
Simovici D.
Galois connection and data mining.
J Univ Comput Sci
2000,
6: 60–73.
- 23
Pei J,
Han J,
Mao R.
Closet: an efficient algorithm for mining frequent closed itemsets. In: Proceedings of the SIGMOD International Workshop on Data Mining and Knowledge Discovery (DMKD 2000; Dallas, TX). ACM Press, New York, NY;
2000,
21–30.
- 24
Pan F,
Cong G,
Tung AKH,
Yang J,
Zaki MJ.
Carpenter: finding closed patterns in long biological datasets. In: Proceedings of the 9th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2003; Washington, DC). New York, NY: ACM Press;
2003,
637–642.
- 25
Bastide Y,
Pasquier N,
Taouil R,
Stumme G,
Lakhal L.
Mining minimal non-redundant association rules using frequent closed itemsets. In: Proceedings of the 1st International Conference on Computational Logic (CL 2000; London, UK). London, United Kingdom: Springer-Verlag, 2000,
972–986.
- 26
Bykowski A,
Rigotti C.
A condensed representation to find frequent patterns. In: Proceedings of the 20th ACM Symposium on Principles of Database Systems (PODS 2001; Santa Barbara, CA). New York, NY: ACM Press;
2001,
267–273.
- 27
Kryszkiewicz M,
Gajek M.
Concise representation of frequent patterns based on generalized disjunction-free generators. In: Proceedings of the 6th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2002; Paipei, Taiwan). New York, NY: Springer-Verlag;
2002,
159–171.
- 28
Liu G,
Li J,
Wong L,
Hsu W.
Positive borders or negative borders: how to make lossless generators based representations concise. In: Proceedings of the 6th SIAM International Conference on Data Mining (SDM 2006; Bethesda, MD). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM);
2006,
469–473.
- 29
Liu G,
Li J,
Wong L.
A new concise representation of frequent itemsets using generators and a positive border.
J Knowl Inf Syst
2008,
17: 35–56.
- 30
Kohavi R,
Bradley CE,
Frasca B,
Mason L,
Zheng Z.
KDD-Cup 2000 organizers’ report: peeling the onion.
SIGKDD Explor
2000,
2: 86–93.
- 31
Calders T,
Goethals B.
Mining all non-derivable frequent itemsets. In: Proceedings of the 6th European Conference on Principles of Data Mining and Knowledge Discovery (PKDD 2002; Helsinki, Finland). Berlin, Germany: Springer;
2002,
74–85.
- 32
Muhonen J,
Toivonen H.
Closed non-derivable itemsets. In: Proceedings of the 10th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2006; Berlin, Germany). Berlin, Germany: Springer;
2006,
601–608.
- 33
Bodon F.
A fast apriori implementation. In: Proceedings of the Workshop on Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). TU Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 34
Borgelt C.
Efficient implementations of apriori and Eclat. In: Proceedings of the Workshop on Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). TU Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 35
Bodon F.
Surprising results of trie-based fim algorithms. In: Proceedings of the 2nd Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 36
Borgelt C.
Recursion pruning for the apriori algorithm. In: Proceedings of the 2nd Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 37
Bodon F,
Schmidt-Thieme L.
The relation of closed itemset mining, complete pruning strategies and item ordering in apriori-based FIM algorithms. In: Proceedings of the 9th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2005; Porto, Portugal). Berlin Germany: Springer-Verlag;
2005.
- 38
Kosters WA,
Pijls W.
Apriori: a depth first implementation. In: Proceedings of the Workshop on Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). TU Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 39
Wang K,
Tang L,
Han J,
Liu J.
Top-down FP-growth for association rule mining. In: Proceedings of the 6th Pacific-Asia Conference on Advances in Knowledge Discovery and Data Mining (PAKDD 2002; Taipei, Taiwan). London, United Kingdom: Springer-Verlag;
2002,
334–340.
- 40
Borgelt C,
Wang X.
SaM: a split and merge algorithm for fuzzy frequent item set mining. In: Proceedings of the 13th International Fuzzy Systems Association World Congress and 6th Conference of European Society for Fuzzy Logic and Technology (IFSA/EUSFLAT’09; Lisbon, Portugal). Lisbon, Portugal: IFSA/EUSFLAT Organization Committee;
2009,
968–973.
- 41
Rácz B,
Bodon F,
Schmidt-Thieme L.
Benchmarking frequent itemset mining algorithms: from measurement to analysis. In: Proceedings of the 1st Open Source Data Mining on Frequent Pattern Mining Implementations (OSDM 2005, Chicago, IL). New York, NY: ACM Press;
2005,
36–45.
- 42
Bayardo R,
Goethals B,
Zaki MJ, eds. In: Proceedings of the 2nd Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 43
Goethals B,
Zaki MJ, eds. In: Proceedings of the Workshop Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 44
Pietracaprina A,
Zandolin D.
Mining frequent itemsets using patricia tries. In: Proceedings of the Workshop on Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). TU Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 45
Schlegel B,
Gemulla R,
Lehner W.
Memory-efficient frequent-itemset mining. In: Proceedings of the 14th International Conference on Extending Database Technology (EDBT 2011; Uppsala, Sweden). New York, NY: ACM Press;
2011,
461–472.
- 46
Zaki MJ,
Hsiao C-J.
CHARM: an efficient algorithm for closed itemset mining. In: Proceedings of the 2nd SIAM International Conference on Data Mining (SDM 2002; Arlington, VA). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM);
2002,
457–473.
- 47
Wang J,
Han J,
Pei J.
Closet+: searching for the best strategies for mining frequent closed itemsets. In: Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (KDD 2003; Washington, DC). New York, NY: ACM Press;
2003.
- 48
Lucchese C,
Orlando S,
Perego R.
DCI closed: a fast and memory efficient algorithm to mine frequent closed itemsets. In: Proceedings of the 2nd Workshop Frequent Item Set Mining Implementations (FIMI 2004; Brighton, UK). Aachen, Germany: CEUR Workshop Proceedings 126;
2004.
- 49
Gouda K,
Zaki MJ.
Efficiently mining maximal frequent itemsets. In: Proceedings of the 1st IEEE International Conference on Data Mining (ICDM 2001; San Jose, CA). Piscataway, NJ: IEEE Press;
2001,
163–170.
- 50
Burdick D,
Calimlim M,
Flannick J,
Gehrke J,
Yiu T.
MAFIA: a performance study of mining maximal frequent itemsets. In: Proceedings of the Workshop on Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). TU Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 51
Mielikäinen T.
Intersecting data to closed sets with constraints. In: Proceedings of the Workshop Frequent Item Set Mining Implementations (FIMI 2003; Melbourne, FL). Aachen, Germany: CEUR Workshop Proceedings 90;
2003.
- 52
Cong G,
Tan KI,
Tung AKH,
Pan F.
Mining frequent closed patterns in microarray data. In: Proceedings of the 4th IEEE International Conference on Data Mining (ICDM 2004; Brighton, UK). Piscataway, NJ: IEEE Press;
2004,
363–366.
- 53
Pan F,
Tung AKH,
Cong G,
Xu X.
Cobbler: combining column and row enumeration for closed pattern discovery. In: Proceedings of the 16th International Conference on Scientific and Statistical Database Management (SSDBM 2004; Santori Island, Greece). Piscataway, NJ: IEEE Press;
2004,
21–30.
- 54
Ganter B,
Wille R.
Formal Concept Analysis: Mathematical Foundations.
Berlin: Springer,
1999.
- 55
Rioult F,
Boulicaut J-F,
Crémilleux B,
Besson J.
Using transposition for pattern discovery from microarray data. In: Proceedings of the 8th ACMSIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD2003; San Diego, CA). New York, NY: ACM Press;
2003,
73–79.
- 56
Borgelt C,
Yang X,
Nogales-Cadenas R,
Carmona-Saez P,
Pascual-Montano A.
Finding closed frequent item sets by intersecting transactions. In: Proceedings of the 14th International Conference on Extending Database Technology (EDBT 2011; Uppsala, Sweden). New York, NY: ACM Press;
2011,
367–376.
- 57
Creighton C,
Hanash S.
Mining gene expression databases for association rules.
Bioinformatics
2003,
19: 79–86.
- 58
Agrawal R,
Imielienski T,
Swami A.
Mining association rules between sets of items in large databases. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD 1993; Washington, DC). New York, NY: ACM Press;
1993,
207–216.
- 59
Srikant R,
Agrawal R.
Mining generalized association rules. In: Proceedings of the 21st International Conference on Very Large Databases (VLDB 1995; Zurich, Switzerland). San Mateo, CA: Morgan Kaufmann;
1995,
407–419.
- 60
Srikant R,
Agrawal R.
Mining quantitative association rules in large relational tables. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD 1996; Montreal, Canada). New York, NY: ACM Press;
1996,
1–12.
- 61
Kuok C,
Fu A,
Wong M.
Mining fuzzy association rules in databases.
SIGMOD Rec
1998,
27: 41–46.
- 62
Brin S,
Motwani R,
Ullman JD,
Tsur S.
Dynamic itemset counting and implication rules for market basket data. In: Proceedings of the ACM International Conference on Management of Data (SIGMOD 1997; Tucson, AZ). New York, NY: ACM Press;
1997,
265–276.
- 63
Piatetsky-Shapiro G.
Discovery, analysis, and presentation of strong rules. In:
G Piatetsky-Shapiro,
WJ Frawley, eds.
Knowledge Discovery in Databases.
Palo Alto, CA: AAAI Press;
1991,
229–248.
- 64
Tan P-N,
Kumar V,
Srivastava J.
Selecting the right interestingness measure for association patterns. In: Proceedings of the 8th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2002; Edmonton, Canada). New York, NY: ACM Press;
2002,
32–41.
- 65
Tan P-N,
Kumar V,
Srivastava J.
Selecting the right objective measure for association analysis.
Inf Syst
2004,
29: 293–313.
- 66
Geng L,
Hamilton HJ.
Interestingness measures for data mining: a survey.
ACM Comput Surv (CSUR)
2006,
38:Article
9.
- 67
Webb GI,
Zhang S.
k-Optimal-rule-discovery.
Data Min Knowl Discov
2005,
10: 39–79.
- 68
Webb GI.
Discovering significant patterns.
Mach Learn
2007,
68: 1–33.
- 69
Choi S-S,
Cha S-H,
Tappert CC.
A survey of binary similarity and distance measures.
J Syst Cybern Inf
2010,
8: 43–48.
- 70
Segond M,
Borgelt C.
Item set mining based on cover similarity. In: Proceedings of the 15th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2011; Shenzhen, China). Berlin, Germany: Springer-Verlag;
2011, LNCS 6635: 493–505.
- 71
Jaccard P.
Étude comparative de la distribution florale dans une portion des Alpes et des Jura.
Bulletin de la Société Vaudoise des Sciences Naturelles
1991;
37: 547–579. France 1901.
- 72
Seno M,
Karypis G.
LPMiner: an algorithm for finding frequent itemsets using length decreasing support constraint. In: Proceedings of the 1st IEEE International Conference on Data Mining (ICDM 2001; San Jose, CA). Piscataway, NJ: IEEE Press;
2001,
505–512.
- 73
Wang J,
Karypis G.
BAMBOO: accelerating closed itemset mining by deeply pushing the length-decreasing support constraint. In: Proceedings of the SIAM International Conference on Data Mining (SDM 2004; Disneyworld, FL). Philadelphia, PA: Society for Industrial and Applied Mathematics;
2004,
432–436.
- 74
Geerts F,
Goethals B,
Mielikäinen T.
Tiling databases. In: Proceedings of the 7th International Conference on Discovery Science (DS 2004; Padova, Italy). Berlin, Germany: Springer;
2004,
278–289.
- 75
Bonferroni CE.
Il calcolo delle assicurazioni su gruppi di teste.
Studi in Onore del Professore Salvatore Ortu Carboni
1935,
13–60.
- 76
Abdi H.
Bonferroni and Sidák corrections for multiple comparisons. In:
NJ Salkind, ed.
Encyclopedia of Measurement and Statistics.
Thousand Oaks, CA: Sage Publications;
2007.
- 77
Holm S.
A simple sequentially rejective multiple test procedure.
Scand J Stat
1979,
6: 65–70.
- 78
Webb GI.
Layered critical values: a powerful direct adjustment approach to discovering significant patterns.
Mach Learn
2008,
71: 307–323.
- 79
Megiddo N,
Srikant R.
Discovering predictive association rules. In: Proceedings of the 4th International Conference on Knowledge Discovery and Data Mining (KDD 1998; New York, NY). Menlo Park, CA: AAAI Press;
1998,
27–78.
- 80
Gionis A,
Mannila H,
Mielikäinen T,
Tsaparas P.
Assessing data mining results via swap randomization. In: Proceedings of the 12th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2006; Philadelphia, PA). New York, NY: ACM Press;
2006,
167–176.
- 81
Siebes A,
Vreeken J,
van Leeuwen M.
Item sets that compress. In: Proceedings of the SIAM International Conference on Data Mining (SDM 2006; Bethesda, MD). Philadelphia, PA: Society for Industrial and Applied Mathematics;
2006,
393–404.
- 82
Vreeken J,
van Leeuwen M,
Siebes A.
Krimp: mining itemsets that compress.
Data Min Knowl Discov
2011,
23: 169–214.
- 83
Bringmann B,
Zimmermann A.
The chosen few: on identifying valuable patterns. In: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007; Omaha, NE). Piscataway, NJ: IEEE Press;
2007,
63–72.
- 84
De Raedt L,
Zimmermann A.
Constraint-based pattern set mining. In: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM 2007; Omaha, NE). Piscataway, NJ: IEEE Press;
2007,
237–248.
- 85
Webb GI.
Self-sufficient itemsets: an approach to screening potentially interesting associations between items.
ACM Trans Knowl Discov Data (TKDD)
2010,
4:Article
3.
- 86
Cheng H,
Yu PS,
Han J.
Approximate frequent itemset mining in the presence of random noise. In:
O Maimon,
L Rokach, eds.
Soft Computing for Knowledge Discovery and Data Mining. Vol.
IV.
Berlin: Springer;
2008,
363–389.
- 87
Pei J,
Tung AKH,
Han J.
Fault-tolerant frequent pattern mining: problems and challenges. In: Proceedings of the ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge Discovery (DMKD 2001; Santa Babara, CA). New York, NY: ACM Press;
2001.
- 88
Besson J,
Robardet C,
Boulicaut J-F.
Mining a new fault-tolerant pattern type as an alternative to formal concept discovery. In: Proceedings of the International Conference on Computational Science (ICCS 2006; Reading, United Kingdom). Berlin, Germany: Springer-Verlag;
2006,
144–157.
- 89
Gionis A,
Mannila H,
Seppänen JK.
Geometric and combinatorial tiles in 0-1 data. In: Proceedings of the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD 2004; Pisa, Italy). Berlin, Germany: Springer-Verlag;
2004, LNAI 3202: 173–184.
- 90
Yang C,
Fayyad U,
Bradley PS.
Efficient discovery of error-tolerant frequent itemsets in high dimensions. In: Proceedings of the 7th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2001; San Francisco, CA). New York, NY: ACM Press;
2001,
194–203.
- 91
Seppänen JK,
Mannila H.
Dense itemsets. In: Proceedings of the 10th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2004; Seattle, WA). New York, NY: ACM Press;
2004,
683–688.
- 92
Liu J,
Paulsen S,
Sun X,
Wang W,
Nobel A,
Prins J.
Mining approximate frequent itemsets in the presence of noise: algorithm and analysis. In: Proceedings of the 6th SIAM Conference on Data Mining (SDM 2006; Bethesda, MD). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM);
2006,
405–416.
- 93
Wang X,
Borgelt C,
Kruse R.
Mining fuzzy frequent item sets. In: Proceedings of the 11th International Fuzzy Systems Association World Congress (IFSA 2005; Beijing, China). Beijing, China; Heidelberg, Germany: Tsinghua University Press; Springer-Verlag;
2005,
528–533.
- 94
Chui C-K,
Kao B,
Hung E.
Mining frequent itemsets from uncertain data. In: Proceedings of the 11th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2007; Nanjing, China). Berlin, Germany: Springer-Verlag;
2007,
47–58.
- 95
Leung CK-S,
Carmichael CL,
Hao B.
Efficient mining of frequent patterns from uncertain data. In: Proceedings of the 7th IEEE International Conference on Data Mining Workshops (ICDMW 2007; Omaha, NE). Piscataway, NJ: IEEE Press;
2007,
489–494.
- 96
Aggarwal CC,
Lin Y,
Wang J,
Wang J.
Frequent pattern mining with uncertain data. In: Proceedings of the 15th ACM International Conference on Knowledge Discovery and Data Mining (KDD 2009; Paris, France). New York, NY: ACM Press;
2009,
29–38.
- 97
Calders T,
Garboni C,
Goethals B.
Efficient pattern mining of uncertain data with sampling. In: Proceedings of the 14th Pacific-Asia Conference on Knowledge Discovery and Data Mining (PAKDD 2010; Hyderabad, India). Berlin, Germany: Springer-Verlag;
2010, I: 480–487.
- 98
Calders T,
Garboni C,
Goethals B.
Approximation of frequentness probability of itemsets in uncertain data. In: Proceedings of the IEEE International Conference on Data Mining (ICDM 2010; Sydney, Australia). Piscataway, NJ: IEEE Press;
2010,
749–754.