Swarm-based metaheuristics in automatic programming: a survey
Juan L. Olmo
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
Search for more papers by this authorJosé R. Romero
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
Search for more papers by this authorCorresponding Author
Sebastián Ventura
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
Correspondence to: [email protected]Search for more papers by this authorJuan L. Olmo
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
Search for more papers by this authorJosé R. Romero
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
Search for more papers by this authorCorresponding Author
Sebastián Ventura
Department of Computer Science and Numerical Analysis, University of Córdoba, Córdoba, Spain
Department of Computer Science, King Abdulaziz University, Jeddah, Saudi Arabia
Correspondence to: [email protected]Search for more papers by this authorConflict of interest: The authors have declared no conflicts of interest for this article.
Abstract
On the one hand, swarm intelligence (SI) is an emerging field of artificial intelligence that takes inspiration in the collective and social behavior of different groups of simple agents. On the other hand, the automatic evolution of programs is an active research area that has attracted a lot of interest and has been mostly promoted by the genetic programming paradigm. The main objective is to find computer programs from a high-level problem statement of what needs to be done, without needing to know the structure of the solution beforehand. This paper looks at the intersection between SI and automatic programming, providing a survey on the state-of-the-art of the automatic programming algorithms that use an SI metaheuristic as the search technique. The expression of swarm programming (SP) has been coined to cover swarm-based automatic programming proposals, since they have been published to date in a disorganized manner. Open issues for future research are listed. Although it is a very recent area, we hope that this work will stimulate the interest of the research community in the development of new SP metaheuristics, algorithms, and applications. WIREs Data Mining Knowl Discov 2014, 4:445–469. doi: 10.1002/widm.1138
This article is categorized under:
- Algorithmic Development > Association Rules
- Technologies > Classification
- Technologies > Computational Intelligence
REFERENCES
- 1Floreano D, Mattiussi C. Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies. The MIT Press, Cambridge, MA, USA; 2008.
- 2Yang XS, Cui Z, Xiao R, Gandomi AH, Karamanoglu M, eds. Swarm Intelligence and Bio-Inspired Computation. Theory and Applications. Elsevier; 2013. doi: 10.1016/B978-0-12-405163-8.00020-X.
10.1016/B978-0-12-405163-8.00020-X Google Scholar
- 3Zhang G. Neural networks for classification: a survey. IEEE Trans Syst Man Cybern C Appl Rev 2000, 30: 451–462. doi: 10.1109/5326.897072.
- 4Eiben AE, Smith JE. Introduction to Evolutionary Computing. Natural Computing Series. 2nd ed. Springer; 2007.
- 5Zheng J, Chen Y, Zhang W. A survey of artificial immune applications. Artif Intell Rev 2010, 34: 19–34. doi: 10.1007/s10462-010-9159-9.
- 6Bonabeu E, Eric T, Dorigo M. Swarm Intelligence: From Natural to Artificial Systems. Oxford University Press, New York, NY, USA; 1999.
- 7Dorigo M, Birattari M. Swarm intelligence. Scholarpedia 2007, 2: 1462.
10.4249/scholarpedia.1462 Google Scholar
- 8Kennedy J. Particle swarm optimization. In: C Sammut, G Webb, eds. Encyclopedia of Machine Learning. Springer; 2010, 760–766. doi: 10.1007/978-0-387-30164-8_630.
10.1007/978-0-387-30164-8_630 Google Scholar
- 9Dorigo M, Gambardella L. Ant colony system: a cooperative learning approach to the traveling salesman problems. IEEE Trans Evol Comput 1997, 1: 53–66.
10.1109/4235.585892 Google Scholar
- 10Karaboga D, Akay B. A survey: algorithms simulating bee swarm intelligence. Artif Intell Rev 2009, 31: 61–85. doi: 10.1007/s10462-009-9127-4.
- 11Yang XS. Swarm-based metaheuristic algorithms and no-free-lunch theorems. In: Theory and New Applications of Swarm Intelligence. InTech; 2012, 1–16. doi: 10.5772/30852.
10.5772/30852 Google Scholar
- 12Koza JR. Genetic Programming: On the Programming of Computers by Means of Natural Selection. The MIT Press, Cambridge, MA, USA; 1992.
- 13Shirakawa S, Ogino S, Nagao T. Dynamic ant programming for automatic construction of programs. IEEJ Trans Electr Electron Eng 2008, 3: 540–548. doi: 10.1002/tee.20311.
- 14Kumaresan N. Optimal control for stochastic linear quadratic singular periodic neuro Takagi-Sugeno (T-S) fuzzy system with singular cost using ant colony programming. Appl Math Modell 2011, 35: 3797–3808. doi: 10.1016/j.apm.2011.02.017.
- 15Olmo JL, Romero JR, Ventura S. Using ant programming guided by grammar for building rule-based classifiers. IEEE Trans Syst Man Cybern B Cybern 2011, 41: 1585–1599. doi: 10.1109/TSMCB.2011.2157681.
- 16Karaboga D, Ozturk C, Karaboga N, Gorkemli B. Artificial bee colony programming for symbolic regression. Inform Sci 2012, 209: 1–15. doi: 10.1016/j.ins.2012.05.002.
- 17Si T, De A, Bhattacharjee A. Grammatical bee colony. In: B Panigrahi, P Suganthan, S Das, S Dash, eds. Swarm, Evolutionary, and Memetic Computing. LNCS, vol. 8297. Springer; 2013, 436–445. doi: 10.1007/978-3-319-03753-0_39.
10.1007/978-3-319-03753-0_39 Google Scholar
- 18Parpinelli RS, Lopes HS. New inspirations in swarm intelligence: a survey. Int J Bio-Inspired Comput 2011, 3: 1–16. doi: 10.1504/IJBIC.2011.038700.
- 19Karaboga D, Gorkemli B, Ozturk C, Karaboga N. A comprehensive survey: artificial bee colony (ABC) algorithm and applications. Artif Intell Rev 2014, 42: 21–57. doi: 10.1007/s10462-012-9328-0.
- 20Millonas MM. Swarms, phase transitions and collective intelligence. In: C Langton, ed. Artificial Life III. Addison-Wesley, Reading, MA, USA; 1994, 417–445.
- 21Garnier S, Gautrais J, Theraulaz G. The biological principles of swarm intelligence. Swarm Intell 2007, 1: 3–31. doi: 10.1007/s11721-007-0004-y.
10.1007/s11721-007-0004-y Google Scholar
- 22Koza JR, Andre D, Bennett FH, Keane MA. Genetic Programming III: Darwinian Invention & Problem Solving. Morgan Kaufmann Publishers Inc., San Francisco, CA, USA; 1999.
- 23Abbass HA, Hoai X, Mckay RI. AntTAG: a new method to compose computer programs using colonies of ants. In: IEEE Congress on Evolutionary Computation (IEEE CEC); 2002, 1654–1659. doi:10.1109/CEC.2002.1004490.
- 24Vanneschi L, Castelli M, Silva S. Measuring bloat, overfitting and functional complexity in genetic programming. In: Genetic and Evolutionary Computation Conference (GECCO). ACM; 2010, 877–884. doi: 10.1145/1830483.1830643.
10.1145/1830483.1830643 Google Scholar
- 25O'Neill M, Ryan C. Grammatical Evolution: Evolutionary Automatic Programming in an Arbitrary Language. Kluwer Academic Publishers, Norwell, MA, USA; 2003.
10.1007/978-1-4615-0447-4 Google Scholar
- 26Ryan C, Collins J, Neill M. Grammatical evolution: evolving programs for an arbitrary language. In: Genetic Programming. LNCS, vol. 1391. Springer; 1998, 83–96. doi: 10.1007/BFb0055930.
10.1007/BFb0055930 Google Scholar
- 27Hoai NX, Mckay RI, Abbass HA. Tree adjoining grammars, language bias, and genetic programming. In: European Conference on Genetic Programming (EuroGP). LNCS, Springer, Heidelberg, Berlin; 2003, 2610: 340–349. doi: 10.1007/3-540-36599-0_31.
10.1007/3-540-36599-0_31 Google Scholar
- 28Whigham P. Grammatically biased genetic programming. In: Workshop on Genetic Programming: From Theory to Real-World Applications; 1995, 33–41.
- 29Ferreira C. Gene Expression Programming: Mathematical Modeling by an Artificial Intelligence. Springer; 2006.
10.1007/3-540-32849-1_2 Google Scholar
- 30Balázs K, Kóczy LT. Hierarchical-interpolative fuzzy system construction by genetic and bacterial memetic programming approaches. Int J Uncertain Fuzziness Knowl-Based Syst 2012, 20: 105–131. doi: 10.1142/S021848851240017X.
- 31Botzheim J, Cabrita C, Koczy LT, Ruano AE. Genetic and bacterial programming for B-spline neural networks design. J Adv Comput Intell Intell Inform 2007, 11: 220–231.
10.20965/jaciii.2007.p0220 Google Scholar
- 32Cabrita C, Botzheim J, Ruano AE, Koczy LT. Design of B-spline neural networks using a bacterial programming approach. In: International Joint Conference on Neural Networks (IJCNN); 2004, 2313–2318. doi:10.1109/IJCNN.2004.1380987.
- 33Nawa N, Furuhashi T. Fuzzy system parameters discovery by bacterial evolutionary algorithm. IEEE Trans Fuzzy Syst 1999, 7: 608–616.
- 34Passino K. Biomimicry of bacterial foraging for distributed optimization and control. IEEE Control Syst 2002, 22: 52–67. doi: 10.1109/MCS.2002.1004010.
- 35Johnson CG. Artificial immune system programming for symbolic regression. In: Genetic Programming. LNCS, vol. 2610. Berlin/Heidelberg: Springer; 2003, 345–353. doi: 10.1007/3-540-36599-0_32.
10.1007/3-540-36599-0_32 Google Scholar
- 36Musilek P, Lau A, Reformat M, Wyard-Scott L. Immune programming. Inform Sci 2006, 176: 972–1002. doi: 10.1016/j.ins.2005.03.009.
- 37Bernardino H, Barbosa H. Grammar-based immune programming. Nat Comput 2011, 10: 209–241. doi: 10.1007/s11047-010-9217-x.
- 38Wang S, Ma J, He Q. An immune programming-based ranking function discovery approach for effective information retrieval. Expert Syst Appl 2010, 37: 5863–5871. doi: 10.1016/j.eswa.2010.02.019.
- 39Boussaïd I, Lepagnot J, Siarry P. A survey on optimization metaheuristics. Inform Sci 2013, 237: 82–117. doi: 10.1016/j.ins.2013.02.041.
- 40Timmis J, Andrews P, Hart E. On artificial immune systems and swarm intelligence. Swarm Intell 2010, 4: 247–273. doi: 10.1007/s11721-010-0045-5.
- 41Castro LN, Timmis J. Artificial Immune Systems: A New Computational Intelligence Approach. Springer; 2002.
- 42Dorigo M, Maniezzo V, Colorni A. Ant system: optimization by a colony of cooperating agents. IEEE Trans Syst Man Cybern B Cybern 1996, 26: 29–41. doi: 10.1109/3477.484436.
- 43Roux O, Fonlupt C. Ant programming: or how to use ants for automatic programming. In: International Conference on Swarm Intelligence (ANTS); 2000, 121–129.
- 44Salehi-Abari A, White T. The uphill battle of ant programming vs. genetic programming. In: International Joint Conference on Computational Intelligence (IJCCI); 2009, 171–176.
- 45Kouchakpour P, Zaknich A, Bräuni T. A survey and taxonomy of performance improvement of canonical genetic programming. Knowl Inform Syst 2009, 21: 1–39. doi: 10.1007/s10115-008-0184-9.
- 46Rojas SA, Bentley PJ. A grid-based ant colony system for automatic program synthesis. In: K Deb, R Poli, W Banzhaf, H-G Beyer, EK Burke, PJ Darwen, D Dasgupta, D Floreano, JA Foster, M Harman, O Holland, PL Lanzi, L Spector, A Tettamanzi, D Thierens, AM Tyrrell, eds. Late Breaking papers at the Genetic and Evolutionary Computation Conference (GECCO-2004); 2004, 1–12.
- 47Chen Y, Yang B, Dong J. Evolving flexible neural networks using ant programming and PSO algorithms. In: F-L Yin, J Wang, C Guo, eds. Advances in Neural Networks. LNCS, vol. 3173. Berlin/Heidelberg: Springer; 2004. doi: 10.1007/978-3-540-28647-9_36.
10.1007/978-3-540-28647-9_36 Google Scholar
- 48Hara A, Kushida JI, Tanabe S, Takahama T. Parallel ant programming using genetic operators. In: 2013 IEEE Sixth International Workshop on Computational Intelligence Applications (IWCIA); 2013, 75–80. doi:10.1109/IWCIA.2013.6624788.
- 49Boryczka M, Czech ZJ. Solving approximation problems by ant colony programming. In: Genetic and Evolutionary Computation Conference (GECCO); 2002, 39–46.
- 50Boryczka M, Czech ZJ, Wieczorek W. Ant colony programming for approximation problems. In: Genetic and Evolutionary Computation Conference (GECCO); 2003, 142–143.
- 51Green J, Whalley JL, Johnson CG, et al. Automatic programming with ant colony optimization. In: UK Workshop on Computational Intelligence. Loughborough University; 2004, 70–77.
- 52Boryczka M. Eliminating introns in ant colony programming. Fundam Inform 2005, 68: 1–19.
- 53Boryczka M. Ant colony programming with the candidate list. In: N Nguyen, G Jo, R Howlett, L Jain, eds. Agent and Multi-Agent Systems: Technologies and Applications. LNCS, vol. 4953. Berlin/Heidelberg: Springer; 2008, 302–311. doi: 10.1007/978-3-540-78582-8_31.
- 54Boryczka M. Ant Colony Programming: Application of Ant Colony System to Function Approximation. In R Chiong, Ed. Intelligent Systems for Automated Learning and Adaptation: Emerging Trends and Applications (pp. 248–272). Hershey, PA: Information Science Reference; 2010. doi: 10.4018/978-1-60566-798-0.ch011.
10.4018/978-1-60566-798-0.ch011 Google Scholar
- 55Shirakawa S, Ogino S, Nagao T. Automatic construction of programs using dynamic ant programming. In: Ant Colony Optimization Methods and Applications. InTech; 2011, 75. doi: 10.5772/13786.
10.5772/13786 Google Scholar
- 56Kumaresan N. Optimal control for stochastic linear quadratic singular Takagi-Sugeno fuzzy system using ant colony programming. Neural Parallel Sci Comput 2010, 18: 89–108.
- 57Kumaresan N. Optimal control for stochastic singular integro-differential Takagi-Sugeno fuzzy system using ant colony programming. Filomat 2012, 26: 415–426. doi: 10.2298/FIL1203415K.
- 58Kumaresan N, Balasubramaniam P. Singular optimal control for stochastic linear quadratic singular system using ant colony programming. Int J Comput Math 2010, 87: 3311–3327. doi: 10.1080/00207160903026634.
- 59Hoai N, McKay R. A framework for tree adjunct grammar guided genetic programming. In: Post-Graduate ADFA Conference on Computer Science (PACCS); 2001, 93–99.
- 60Shan Y, Abbass H, Mckay RI, Essam D. AntTAG: a further study. In: Australia-Japan Joint Workshop on Intelligent and Evolutionary Systems; 2002, 1–8.
- 61Keber C, Schuster MG. Option valuation with generalized ant programming. In: Genetic and Evolutionary Computation Conference (GECCO); 2002, 74–81.
- 62Keber C, Schuster M. Generalized ant programming in option pricing: determining implied volatilities based on american put options. In: Proceedings of the IEEE International Conference on Computational Intelligence for Financial Engineering (IEEE CIFER); 2003, 123–130. doi:10.1109/CIFER.2003.1196251.
- 63Salehi-Abari A, White T. Enhanced generalized ant programming (egap). In: Genetic and Evolutionary Computation Conference (GECCO). ACM; 2008, 111–118. doi: 10.1145/1389095.1389111.
- 64Espejo P, Ventura S, Herrera F. A survey on the application of genetic programming to classification. IEEE Trans Syst Man Cybern C Appl Rev 2010, 40: 121–144. doi: 10.1109/TSMCC.2009.2033566.
- 65Freitas AA. A review of evolutionary algorithms for data mining. In: O Maimon, L Rokach, eds. Soft Computing for Knowledge Discovery and Data Mining. Springer; 2008, 79–111. doi: 10.1007/978-0-387-69935-6_4.
10.1007/978-0-387-69935-6_4 Google Scholar
- 66Parpinelli R, Lopes H, Freitas A. Data mining with an ant colony optimization algorithm. IEEE Trans Evol Comput 2002, 6: 321–332. doi: 10.1109/TEVC.2002.802452.
- 67Martens D, De Backer M, Vanthienen J, Snoeck M, Baesens B. Classification with ant colony optimization. IEEE Trans Evol Comput 2007, 11: 651–665. doi: 10.1109/TEVC.2006.890229.
- 68Otero FEB, Freitas AA, Johnson CG. Handling continuous attributes in ant colony classification algorithms. In: IEEE Symposium on Computational Intelligence and Data Mining (IEEE CIDM); 2009, 225–231.
- 69Holden N, Freitas AA. A hybrid PSO/ACO algorithm for discovering classification rules in data mining. J Artif Evol Appl 2008, 2008: 2:1–2:11. doi: 10.1155/2008/316145.
10.1155/2008/316145 Google Scholar
- 70Bojarczuk CC, Lopes HS, Freitas AA, Michalkiewicz EL. A constrained-syntax genetic programming system for discovering classification rules: application to medical data sets. Artif Intell Med 2004, 30: 27–48.
- 71Frank E, Witten IH. Generating accurate rule sets without global optimization. In: International Conference on Machine Learning (ICML); 1998, 144–151.
- 72Cohen W. Fast effective rule induction. In: International Conference on Machine Learning (ICML); 1995, 115–123.
- 73Olmo JL, Romero JR, Ventura S. Classification rule mining using ant programming guided by grammar with multiple Pareto fronts. Soft Comput 2012, 16: 2143–2163. doi: 10.1007/s00500-012-0883-8.
- 74Cecilia JM, García JM, Nisbet A, Amos M, Ujaldón M. Enhancing data parallelism for ant colony optimization on GPUs. J Parallel Distrib Comput 2013, 73: 42–51. doi: 10.1016/j.jpdc.2012.01.002.
- 75Cano A, Olmo JL, Ventura S. Parallel multi-objective ant programming for classification using GPUs. J Parallel Distrib Comput 2013, 73: 713–728. doi: 10.1016/j.jpdc.2013.01.017.
- 76Olmo JL, Cano A, Romero JR, Ventura S. Binary and multiclass imbalanced classification using multi-objective ant programming. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA); 2012, 70–76. doi:10.1109/ISDA.2012.6416515.
- 77Galar M, Fernández A, Barrenechea E, Bustince H, Herrera F. An overview of ensemble methods for binary classifiers in multi-class problems: experimental study on one-vs-one and one-vs-all schemes. Pattern Recog 2011, 44: 1761–1776. doi: 10.1016/j.patcog.2011.01.017.
- 78Olmo JL, Luna JM, Romero JR, Ventura S. Mining association rules with single and multi-objective grammar guided ant programming. Integr Comput-Aided Eng 2013, 20: 217–234. doi: 10.3233/ICA-130430.
- 79Olmo JL, Romero JR, Ventura S. Single and multi-objective ant programming for mining interesting rare association rules. Int J Hybrid Intell Syst 2014, 11: 197–209. doi: 10.3233/HIS-140195.
10.3233/HIS-140195 Google Scholar
- 80Miller J, Thomson P. Cartesian genetic programming. In: R Poli, W Banzhaf, W Langdon, J Miller, P Nordin, T Fogarty, eds. Genetic Programming. LNCS, vol. 1802. Berlin/Heidelberg: Springer; 2000, 121–132. doi: 10.1007/978-3-540-46239-2_9.
10.1007/978-3-540-46239-2_9 Google Scholar
- 81Hara A. Watanabe M, Takahama T. Cartesian ant programming. In: 2011 IEEE International Conference on Systems, Man, and Cybernetics (SMC); 2011; 3161–3166. doi:10.1109/ICSMC.2011.6084146.
- 82Luis S, dos Santos MV. On the evolvability of a hybrid ant colony-cartesian genetic programming methodology. In: EuroGP; 2013, 109–120. doi:10.1007/978-3-642-37207-0_10.
- 83Bullnheimer B, Hartl RF, Strauss C. A new rank based version of the ant system—a computational study. Cent Eur J Oper Res Econ 1997, 7: 25–38.
- 84Stützle T, Hoos HH. MAX-MIN ant system. Future Gener Comput Syst 2000, 16: 889–914.
- 85Kennedy J, Eberhart R. Particle swarm optimization. In: IEEE International Conference on Neural Networks (ICNN), vol. 4; 1995, 1942–1948. doi:10.1109/ICNN.1995.488968.
- 86O'Neill M, Brabazon A. Grammatical swarm. In: Genetic and Evolutionary Computation Conference (GECCO); 2004, 163–174.
- 87O'Neill M, Brabazon A. Grammatical swarm: the generation of programs by social programming. Nat Comput 2006, 5: 443–462. doi: 10.1007/s11047-006-9007-7.
10.1007/s11047-006-9007-7 Google Scholar
- 88O'Neill M, Brabazon A, Adley C. The automatic generation of programs for classification problems with grammatical swarm. In: IEEE Congress on Evolutionary Computation, 2004 (CEC2004), vol. 1; 2004, 104–110. doi:10.1109/CEC.2004.1330844.
- 89Ramstein G, Beaume N, Jacques Y. A grammatical swarm for protein classification. In: 2008 IEEE Congress on Evolutionary Computation (CEC); 2008, 2561–2568. doi:10.1109/CEC.2008.4631142.
- 90Ramstein G, Beaume N, Jacques Y. Detection of remote protein homologs using social programming. In: A Abraham, AE Hassanien, A de Carvalho, eds. Foundations of Computational Intelligence Volume 4. Studies in Computational Intelligence, vol. 204. Springer; 2009, 277–296. doi: 10.1007/978-3-642-01088-0_12.
10.1007/978-3-642-01088-0_12 Google Scholar
- 91O'Neill M, Leahy F, Brabazon A. Grammatical swarm: a variable-length particle swarm algorithm. In: Swarm Intelligent Systems, Studies in Computational Intelligence. Springer; 2006, 59–74.
10.1007/978-3-540-33869-7_3 Google Scholar
- 92Veenhuis C, Koppen M, Kruger J, Nickolay B. Tree swarm optimization: an approach to PSO-based tree discovery. In: 2005 IEEE Congress on Evolutionary Computation (CEC), vol. 2; 2005, pp. 1238–1245. doi:10.1109/CEC.2005.1554832.
- 93Togelius J, Nardi RD, Moraglio A. Geometric PSO + GP = particle swarm programming. In: IEEE Congress on Evolutionary Computation; 2008, 3594–3600.
- 94Qi F, Ma Y, Liu X, Ji G. A hybrid genetic programming with particle swarm optimization. In: Advances in Swarm Intelligence. LNCS, vol. 7929. Springer; 2013, 11–18. doi: 10.1007/978-3-642-38715-9_2.
10.1007/978-3-642-38715-9_2 Google Scholar
- 95Wedde H, Farooq M, Zhang Y. Beehive: an efficient fault-tolerant routing algorithm inspired by honey bee behavior. In: M Dorigo, M Birattari, C Blum, L Gambardella, F Mondada, T Stützle, eds. Ant Colony Optimization and Swarm Intelligence. LNCS, vol. 3172. Springer; 2004, 83–94. doi: 10.1007/978-3-540-28646-2_8.
10.1007/978-3-540-28646-2_8 Google Scholar
- 96Fathian M, Amiri B, Maroosi A. Application of honey-bee mating optimization algorithm on clustering. Appl Math Comput 2007, 190: 1502–1513. doi: 10.1016/j.amc.2007.02.029.
- 97Abbass HA, Teo J. A true annealing approach to the marriage in honey-bees optimization algorithm. Int J Comput Intell Appl 2003, 3: 199–211.
10.1142/S146902680300094X Google Scholar
- 98Jung SH. Queen-bee evolution for genetic algorithms. Electron Lett 2003, 39: 575–576. doi: 10.1049/el:20030383.
- 99Nakrani S, Tovey C. From honeybees to internet servers: biomimicry for distributed management of internet hosting centers. Bioinspir Biomim 2007, 2: 182–197.
- 100Rao RS, Narasimham SVL, Ramalingaraju M. Optimization of distribution network configuration for loss reduction using artificial bee colony algorithm. Int J Electr Power Energy Syst Eng 2008, 1: 116–122.
- 101Purnamadjaja AH, Russell RA. Pheromone communication in a robot swarm: necrophoric bee behaviour and its replication. Robotica 2005, 23: 731–742. doi: 10.1017/S0263574704001225.
- 102Lemmens N, de Jong S, Tuyls K, Nowé A. Bee behaviour in multi-agent systems. In: K Tuyls, A Nowe, Z Guessoum, D Kudenko, eds. Adaptive Agents and Multi-Agent Systems III. Adaptation and Multi-Agent Learning. LNCS, vol. 4865. Springer; 2008, 145–156. doi: 10.1007/978-3-540-77949-0_11.
- 103Gutierrez R, Huhns M. Multiagent-based fault tolerance management for robustness. In: A Schuster, ed. Robust Intelligent Systems. LNCS. Springer; 2008, 23–41. doi: 10.1007/978-1-84800-261-6_2.
10.1007/978-1-84800-261-6_2 Google Scholar
- 104Li X, Shao Z, Quian J. An optimizing method based on autonomous animals: fish-swarm algorithm. Syst Eng Theory Pract 2002, 22: 32–38.
- 105Neshat M, Sepidnam G, Sargolzaei M, Toosi A. Artificial fish swarm algorithm: a survey of the state-of-the-art, hybridization, combinatorial and indicative applications. Artif Intell Rev 2012: 1–33. doi: 10.1007/s10462-012-9342-2.
10.1007/s10462-012-9342-2 Google Scholar
- 106Liu Q, Odaka T, Kuroiwa J, Ogura H. Application of an artificial fish swarm algorithm in symbolic regression. IEICE Trans Inf Syst 2013, E96-D: 872–895.
- 107Gandomi A, Yang XS, Alavi A, Talatahari S. Bat algorithm for constrained optimization tasks. Neural Comput Appl 2013, 22: 1239–1255. doi: 10.1007/s00521-012-1028-9.
- 108Yang C, Tu X, Chen J. Algorithm of marriage in honey bees optimization based on the wolf pack search. In: International Conference on Intelligent Pervasive Computing (IPC); 2007, 462–467. doi:10.1109/IPC.2007.104.
- 109Headleand C, Teahan W. Grammatical herding. J Comput Sci Syst Biol 2013, 6: 43–47. doi: 10.4172/jcsb.1000099.
10.4172/jcsb.1000099 Google Scholar
- 110Headleand C. Swarm based population seeding of grammatical evolution. J Comput Sci Syst Biol 2013, 6: 132–135. doi: 10.4172/jcsb.1000110.
10.4172/jcsb.1000110 Google Scholar
- 111Yang XS. Firefly algorithms for multimodal optimization. In: O Watanabe, T Zeugmann, eds. Stochastic Algorithms: Foundations and Applications. LNCS, vol. 5792. Springer; 2009, 169–178. doi: 10.1007/978-3-642-04944-6_14.
- 112Husselmann A, Hawick K. Geometric firefly algorithms on graphical processing units. In: XS Yang, ed. Cuckoo Search and Firefly Algorithm. Studies in Computational Intelligence, vol. 516. Springer; 2014, 245–269. doi: 10.1007/978-3-319-02141-6_12.
10.1007/978-3-319-02141-6_12 Google Scholar
- 113Gandomi AH, Alavi AH. Krill herd: a new bio-inspired optimization algorithm. Commun Nonlinear Sci Numer Simul 2012, 17: 4831–4845. doi: 10.1016/j.cnsns.2012.05.010.
- 114Gheraibia Y, Moussaoui A. Penguins search optimization algorithm (PeSOA). In: Recent Trends in Applied Artificial Intelligence. LNCS, vol. 7906. Springer; 2013, 222–231. doi: 10.1007/978-3-642-38577-3_23.
10.1007/978-3-642-38577-3_23 Google Scholar
- 115Cuevas E, Cienfuegos M. A new algorithm inspired in the behavior of the social-spider for constrained optimization. Expert Syst Appl 2014, 41: 412–425. doi: 10.1016/j.eswa.2013.07.067.
- 116Pappa G, Ochoa G, Hyde M, Freitas A, Woodward J, Swan J. Contrasting meta-learning and hyper-heuristic research: the role of evolutionary algorithms. Genet Program Evolvable Mach 2014, 15: 3–35. doi: 10.1007/s10710-013-9186-9.
- 117Boryczka M. Ant colony programming for approximation problems. In: Intelligent Information Systems. Advances in Soft Computing, vol. 17. Springer; 2002, 147–156. doi: 10.1007/978-3-7908-1777-5_15.
10.1007/978-3-7908-1777-5_15 Google Scholar
- 118Leahy F. Social programming: Investigations in grammatical swarm. MSc Thesis, University of Limerick, Ireland, 2005.
- 119Si T, De A, Bhattacharjee A. Grammatical swarm based-adaptable velocity update equations in particle swarm optimizer. In: SC Satapathy, SK Udgata, BN Biswal, eds. Proceedings of the International Conference on Frontiers of Intelligent Computing: Theory and Applications (FICTA) 2013. Advances in Intelligent Systems and Computing, vol. 247. Springer; 2014, 197–206. doi: 10.1007/978-3-319-02931-3_24.
- 120Chen Y, Dong J, Yang B. Automatic design of hierarchical TS-FS model using ant programming and PSO algorithm. In: C Bussler, D Fensel, eds. Artificial Intelligence: Methodology, Systems, and Applications. LNCS, vol. 3192. Springer; 2004, 285–294. doi: 10.1007/978-3-540-30106-6_29.
- 121Keber C, Schuster M. Collective intelligence in option pricing: determining black-scholfs implied volatilities with generalized ant programming. In: World Automation Congress, vol. 17; 2004, 465–470.
- 122de Mingo López LF, Blas NG, Arteta A. The optimal combination: grammatical swarm, particle swarm optimization and neural networks. J Comput Sci 2012, 3: 46–55. doi: 10.1016/j.jocs.2011.12.005.
- 123Olmo JL, Luna JM, Romero JR, Ventura S. An automatic programming ACO-based algorithm for classification rule mining. In: Trends in Practical Applications of Agents and Multiagent Systems. LNAI. Springer; 2010, 649–656. doi: 10.1007/978-3-642-12433-4_76.
10.1007/978-3-642-12433-4_76 Google Scholar
- 124Olmo JL, Romero JR, Ventura S. A grammar based ant programming algorithm for mining classification rules. In: 2010 IEEE Congress on Evolutionary Computation (CEC); 2010, 1–8. doi:10.1109/CEC.2010.5586492.
- 125Olmo JL, Romero JR, Ventura S. Ant programming algorithms for classification. In: S Alam, G Dobbie, YS Koh, S ur Rehman, eds. Biologically-Inspired Techniques for Knowledge Discovery and Data Mining. IGI Global, Hershey, PA, USA; 2014, 107–128. doi: 10.4018/978-1-4666-6078-6.ch005.
10.4018/978-1-4666-6078-6.ch005 Google Scholar
- 126Olmo JL, Romero JR, Ventura S. Multi-objective ant programming for mining classification rules. In: A Moraglio, S Silva, K Krawiec, P Machado, C Cotta, eds. Genetic Programming. LNCS, vol. 7244. Berlin/Heidelberg: Springer; 2012, 146–157. doi: 10.1007/978-3-642-29139-5_13.
10.1007/978-3-642-29139-5_13 Google Scholar
- 127Olmo JL, Luna JM, Romero JR, Ventura S. Association rule mining using a multi-objective grammar-based ant programming algorithm. In: 2011 11th International Conference on Intelligent Systems Design and Applications (ISDA); 2011, 971–977. doi:10.1109/ISDA.2011.6121784.
- 128Martens D, Baesens B, Fawcett T. Editorial survey: swarm intelligence for data mining. Mach Learn 2011, 82: 1–42. doi: 10.1007/s10994-010-5216-5.
- 129Darabos C, Giacobini M, Hu T, Moore J. Lévy-flight genetic programming: towards a new mutation paradigm. In: M Giacobini, L Vanneschi, W Bush, eds. Evolutionary Computation, Machine Learning and Data Mining in Bioinformatics. Lecture Notes in Computer Science, vol. 7246. Springer; 2012, 38–49. doi: 10.1007/978-3-642-29066-4_4.
10.1007/978-3-642-29066-4_4 Google Scholar
- 130White T, Salehi-Abari A. A swarm-based crossover operator for genetic programming. In: Genetic and Evolutionary Computation Conference (GECCO). ACM; 2008, 1345–1346. doi: 10.1145/1389095.1389356.
10.1145/1389095.1389356 Google Scholar
- 131Jabeen H, Baig AR. GPSO: a framework for optimization of genetic programming classifier expressions for binary classification using particle swarm optimization. Int J Innovative Comput Inf Control 2012, 8: 233–242.
- 132Bouaziz S, Dhahri H, Alimi AM, Abraham A. A hybrid learning algorithm for evolving flexible beta basis function neural tree model. Neurocomputing 2013, 117: 107–117. doi: 10.1016/j.neucom.2013.01.024.