Noble metal nanoparticles in DNA detection and delivery
Xi-Jun Chen
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorBrenda L. Sanchez-Gaytan
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorZhaoxia Qian
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorCorresponding Author
So-Jung Park
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USASearch for more papers by this authorXi-Jun Chen
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorBrenda L. Sanchez-Gaytan
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorZhaoxia Qian
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Search for more papers by this authorCorresponding Author
So-Jung Park
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USA
Department of Chemistry, University of Pennsylvania, Philadelphia, PA, USASearch for more papers by this authorAbstract
DNA-conjugated metal nanoparticles have attracted enormous attention for biological and medical applications, owing to their unusual DNA melting characteristics as well as unique optical and catalytic properties. The combination of these unique properties has not only led to the development of DNA-detection technologies with remarkably high selectivity and sensitivity, but also to the development of gene therapeutic agents with high efficacy and efficiency. In this review, we present a comprehensive coverage on their applications in detecting, manipulating, and delivering genes. WIREs Nanomed Nanobiotechnol 2012, 4:273–290. doi: 10.1002/wnan.1159
This article is categorized under:
- Diagnostic Tools > Diagnostic Nanodevices
- Diagnostic Tools > In Vitro Nanoparticle-Based Sensing
- Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
REFERENCES
- 1Sharma V, Park K, Srinivasarao M. Colloidal dispersion of gold nanorods: historical background, optical properties, seed-mediated synthesis, shape separation and self-assembly. Mat Sci Eng R 2009, 65: 1–38.
- 2Xia Y, Halas NJ. Shape-controlled synthesis and surface plasmonic properties of metallic nanostructures. MRS Bull 2005, 30: 338–344.
- 3Park S-J, Taton TA, Mirkin CA. Array-based electrical detection of DNA with nanoparticle probes. Science 2002, 295: 1503–1506.
- 4Schmid G, Simon U. Gold nanoparticles: assembly and electrical properties in 1-3 dimensions. Chem Commun 2005, 6: 697–710.
- 5Yamamoto Y, Hori H. Direct observation of the ferromagnetic spin polarization in gold nanoparticles: a review. Rev Adv Mater Sci 2006, 12: 23–32.
- 6Wagner V, Dullaart A, Bock A-K, Zweck A. The emerging nanomedicine landscape. Nat Biotech 2006, 24: 1211–1217.
- 7Nie S, Xing Y, Kim GJ, Simons JW. Nanotechnology applications in cancer. Annu Rev Biomed Eng 2007, 9: 257–288.
- 8Jain PK, Huang X, El-Sayed IH, El-Sayed MA. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 2008, 41: 1578–1586.
- 9Cobley CM, Chen J, Cho EC, Wang LV, Xia Y. Gold nanostructures: a class of multifunctional materials for biomedical applications. Chem Soc Rev 2011, 40: 44–56.
- 10Raikhel NV, Mishkind M, Palevitz BA. Immunocytochemistry in plants with colloidal gold conjugates. Protoplasma 1984, 121: 25–33.
- 11Hodges GM, Southgate J, Toulson EC. Colloidal gold–a powerful tool in scanning electron microscope immunocytochemistry: an overview of bioapplications. Scanning Microscopy 1987, 1: 301–318.
- 12Kelly KL, Coronado E, Zhao LL, Schatz GC. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment. J Phys Chem B 2002, 107: 668–677.
- 13Tao AR, Habas S, Yang P. Shape control of colloidal metal nanocrystals. Small 2008, 4: 310–325.
- 14Grzelczak M, Perez-Juste J, Mulvaney P, Liz-Marzan LM. Shape control in gold nanoparticle synthesis. Chem Soc Rev 2008, 37: 1783–1791.
- 15Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 2009, 48: 60–103.
- 16Murphy CJ, Sau TK, Gole AM, Orendorff CJ, Gao J, Gou L, Hunyadi SE, Li T. Anisotropic metal nanoparticles: synthesis, assembly, and optical applications. J Phys Chem B 2005, 109: 13857–13870.
- 17Hu M, Chen J, Li Z-Y, Au L, Hartland GV, Li X, Marquez M, Xia Y. Gold nanostructures: engineering their plasmonic properties for biomedical applications. Chem Soc Rev 2006, 35: 1084–1094.
- 18Murphy CJ, Sau TK, Gole A, Orendorff CJ. Surfactant-directed synthesis and optical properties of one-dimensional plasmonic metallic nanostructures. MRS Bull 2005, 30: 349–355.
- 19Xia Y, Xiong Y, Lim B, Skrabalak S. Shape-controlled synthesis of metal nanocrystals: simple chemistry meets complex physics? Angew Chem Int Ed 2009, 48: 60–103.
- 20Cobley C, Skrabalak S, Campbell D, Xia Y. Shape-controlled synthesis of silver nanoparticles for plasmonic and sensing applications. Plasmonics 2009, 4: 171–179.
- 21Lu X, Rycenga M, Skrabalak SE, Wiley B, Xia Y. Chemical synthesis of novel plasmonic nanoparticles. Annu Rev Phys Chem 2009, 60: 167–192.
- 22Hirsch L, Gobin A, Lowery A, Tam F, Drezek R, Halas N, West J. Metal nanoshells. Ann Biomed Eng 2006, 34: 15–22.
- 23Huang X, Neretina S, El-Sayed MA. Gold nanorods: from synthesis and properties to biological and biomedical applications. Adv Mater 2009, 21: 4880–4910.
- 24Nehl CL, Liao H, Hafner JH. Optical properties of star-shaped gold nanoparticles. Nano Lett 2006, 6: 683–688.
- 25Millstone JE, Métraux GS, Mirkin CA. Controlling the edge length of gold nanoprisms via a seed-mediated approach. Adv Funct Mater 2006, 16: 1209–1214.
- 26Skrabalak SE, Chen J, Au L, Lu X, Li X, Xia Y. Gold nanocages for biomedical applications. Adv Mater 2007, 19: 3177–3184.
- 27Nicewarner-Pena SR, Freeman RG, Reiss BD, He L, Pena DJ, Walton ID, Cromer R, Keating CD, Natan MJ. Submicrometer metallic barcodes. Science 2001, 294: 137–141.
- 28Zheng J, Zhang C, Dickson RM. Highly fluorescent, water-soluble, size-tunable gold quantum dots. Phys Rev Lett 2004, 93: 077402.
- 29Turkevich J, Stevenson PC, Hillier J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 1951, 11: 55–75.
- 30Ji X, Song X, Li J, Bai Y, Yang W, Peng X. Size control of gold nanocrystals in citrate reduction: the third role of citrate. J Am Chem Soc 2007, 129: 13939–13948.
- 31Frens G. Controlled nucleation for the regulation of the particle-size in monodisperse gold suspensions. Nat Phys Sci 1973, 241: 20–22.
- 32Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. Synthesis of thiol-derivatized gold nanoparticles in a 2-phase liquid-liquid system. Chem Commun 1994, 7: 801–802.
10.1039/c39940000801 Google Scholar
- 33Hostetler MJ, Green SJ, Stokes JJ, Murray RW. Monolayers in three dimensions: synthesis and electrochemistry of ω-functionalized alkanethiolate-stabilized gold cluster compounds. J Am Chem Soc 1996, 118: 4212–4213.
- 34Shimizu T, Teranishi T, Hasegawa S, Miyake M. Size evolution of alkanethiol-protected gold nanoparticles by heat treatment in the solid state. J Phys Chem B 2003, 107: 2719–2724.
- 35Jana NR, Peng X. Single-phase and gram-scale routes toward nearly monodisperse au and other noble metal nanocrystals. J Am Chem Soc 2003, 125: 14280–14281.
- 36Brinson BE, Lassiter JB, Levin CS, Bardhan R, Mirin N, Halas NJ. Nanoshells made easy: improving Au layer growth on nanoparticle surfaces. Langmuir 2008, 24: 14166–14171.
- 37Jackson JB, Halas NJ. Silver nanoshells: variations in morphologies and optical properties. J Phys Chem B 2001, 105: 2743–2746.
- 38Sanchez-Gaytan BL, Park S-J. Spiky gold nanoshells. Langmuir 2010, 26: 19170–19174.
- 39Gole A, Murphy CJ. Seed-mediated synthesis of gold nanorods: role of the size and nature of the seed. Chem Mater 2004, 16: 3633–3640.
- 40Jana NR, Gearheart L, Murphy CJ. Wet chemical synthesis of silver nanorods and nanowires of controllable aspect ratio. Chem Commun 2001, 7: 617–618.
- 41Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mater 2003, 15: 1957–1962.
- 42Ha TH, Koo H-J, Chung BH. Shape-controlled syntheses of gold nanoprisms and nanorods influenced by specific adsorption of halide ions. J Phys Chem C 2006, 111: 1123–1130.
- 43Pastoriza-Santos I, Liz-Marzan LM. Synthesis of silver nanoprisms in DMF. Nano Lett 2002, 2: 903–905.
- 44Jin R, Cao Y, Mirkin CA, Kelly KL, Schatz GC, Zheng JG. Photoinduced conversion of silver nanospheres to nanoprisms. Science 2001, 294: 1901–1903.
- 45Rodríguez-Lorenzo L, Álvarez-Puebla RA, de Abajo FJG, Liz-Marzán LM. Surface enhanced raman scattering using star-shaped gold colloidal nanoparticles. J Phys Chem C 2009, 114: 7336–7340.
- 46Sun Y, Xia Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298: 2176–2179.
- 47Liu Y, Walker ARH. Monodisperse gold–copper bimetallic nanocubes: facile one-step synthesis with controllable size and composition. Angew Chem Int Ed 2010, 49: 6781–6785.
- 48Zheng J, Petty JT, Dickson RM. High quantum yield blue emission from water-soluble Au8 nanodots. J Am Chem Soc 2003, 125: 7780–7781.
- 49Zheng J, Dickson RM. Individual water-soluble dendrimer-encapsulated silver nanodot fluorescence. J Am Chem Soc 2002, 124: 13982–13983.
- 50Richards CI, Choi S, Hsiang J-C, Antoku Y, Vosch T, Bongiorno A, Tzeng Y-L, .Dickson RM. Oligonucleotide-stabilized Ag nanocluster fluorophores. J Am Chem Soc 2008, 130: 5038–5039.
- 51Kanaras AG, Wang Z, Bates AD, Cosstick R, Brust M. Towards multistep nanostructure synthesis: programmed enzymatic self-assembly of dna/gold systems. Angew Chem Int Ed 2003, 42: 191–194.
- 52Claridge SA, Goh SL, Frachet JMJ, Williams SC, Micheel CM, Alivisatos AP. Directed assembly of discrete gold nanoparticle groupings using branched DNA scaffolds. Chem Mater 2005, 17: 1628–1635.
- 53Zhao W, Lin L, Hsing IM. Rapid synthesis of DNA-functionalized gold nanoparticles in salt solution using mononucleotide-mediated conjugation. Bioconjugate Chem 2009, 20: 1218–1222.
- 54Storhoff JJ, Elghanian R, Mucic RC, Mirkin CA, Letsinger RL. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J Am Chem Soc 1998, 120: 1959–1964.
- 55Hurst SJ, Lytton-Jean AKR, Mirkin CA. Maximizing DNA loading on a range of gold nanoparticle sizes. Anal Chem 2006, 78: 8313–8318.
- 56Storhoff JJ, Lazarides AA, Mucic RC, Mirkin CA, Letsinger RL, Schatz GC. What controls the optical properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 2000, 122: 4640–4650.
- 57Jin R, Wu G, Li Z, Mirkin CA, Schatz GC. What controls the melting properties of DNA-linked gold nanoparticle assemblies? J Am Chem Soc 2003, 125: 1643–1654.
- 58Chen XJ, Sanchez-Gaytan BL, Hayik SEN, Fryd M, Wayland BB, Park SJ. Self-assembled hybrid structures of DNA block-copolymers and nanoparticles with enhanced DNA binding properties. Small 2010, 20: 2256–2260.
- 59Xia F, Zuo X, Yang R, Xiao Y, Kang D, Vallée-Bélisle A, Gong X, Yuen JD, Hsu BBY, Heeger AJ, et al. Colorimetric detection of DNA, small molecules, proteins, and ions using unmodified gold nanoparticles and conjugated polyelectrolytes. Proc Nat Acad Sci 2010, 107: 10837–10841.
- 60Lee J-S, Ulmann PA, Han MS, Mirkin CA. A DNA-gold nanoparticle-based colorimetric competition assay for the detection of cysteine. Nano Lett 2008, 8: 529–533.
- 61Lee J-S, Han MS, Mirkin CA. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew Chem Int Ed 2007, 46: 4093–4096.
- 62Wu Y, Sefah K, Liu H, Wang R, Tan W. DNA aptamer-micelle as an efficient detection/delivery vehicle toward cancer cells. Proc Natl Acad Sci 2010, 107: 5–10.
- 63Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Nat Acad Sci 2004, 101: 14036–14039.
- 64Storhoff JJ, Marla SS, Bao P, Hagenow S, Mehta H, Lucas A, Garimella V, Patno T, Buckingham W, Cork W, et al. Gold nanoparticle-based detection of genomic DNA targets on microarrays using a novel optical detection system. Biosens Bioelectron 2004, 19: 875–883.
- 65Nam J-M, Stoeva SI, Mirkin CA. Bio-bar-code-based DNA detection with PCR-like sensitivity. J Am Chem Soc 2004, 126: 5932–5933.
- 66Yao X, Li X, Toledo F, Zurita-Lopez C, Gutova M, Momand J, Zhou F. Sub-attomole oligonucleotide and p53 cDNA determinations via a high-resolution surface plasmon resonance combined with oligonucleotide-capped gold nanoparticle signal amplification. Anal Biochem 2006, 354: 220–228.
- 67Cao YC, Jin R, Mirkin CA. Nanoparticles with Raman spectroscopic fingerprints for DNA and RNA detection. Science 2002, 297: 1536–1540.
- 68Mirkin CA, Letsinger RL, Mucic RC, Storhoff JJ. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382: 607–609.
- 69Elghanian R, Storhoff JJ, Mucic RC, Letsinger RL, Mirkin CA. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277: 1078–1080.
- 70Rosi NL, Mirkin CA. Nanostructures in biodiagnostics. Chem Rev 2005, 105: 1547–1562.
- 71Xu W, Xue X, Li T, Zeng H, Liu X. Ultrasensitive and selective colorimetric DNA detection by nicking endonuclease assisted nanoparticle amplification. Angew Chem Int Ed 2009, 48: 6849–6852.
- 72Li H, Rothberg L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc Natl Acad Sci U S A 2004, 101: 14036–14039.
- 73Chakrabarti R, Klibanov AM. Nanocrystals modified with peptide nucleic acids (PNAs) for selective self-assembly and DNA detection. J Am Chem Soc 2003, 125: 12531–12540.
- 74Su X, Kanjanawarut R. Control of metal nanoparticles aggregation and dispersion by PNA and PNA-DNA complexes, and its application for colorimetric DNA detection. ACS Nano 2009, 3: 2751–2759.
- 75Kanjanawarut R, Su X. Colorimetric detection of DNA using unmodified metallic nanoparticles and peptide nucleic acid probes. Anal Chem 2009, 81: 6122–6129.
- 76Pan B, Ao L, Gao F, Tian H, He R, Cui D. End-to-end self-assembly and colorimetric characterization of gold nanorods and nanospheres via oligonucleotide hybridization. Nanotechnology 2005, 16: 1776.
- 77Parab HJ, Jung C, Lee J-H, Park HG. A gold nanorod-based optical DNA biosensor for the diagnosis of pathogens. Biosens Bioelectron 2010, 26: 667–673.
- 78He W, Huang CZ, Li YF, Xie JP, Yang RG, Zhou PF, Wang J. One-step label-free optical genosensing system for sequence-specific DNA related to the human immunodeficiency virus based on the measurements of light scattering signals of gold nanorods. Anal Chem 2008, 80: 8424–8430.
- 79Lee J-S, Mirkin CA. Chip-based scanometric detection of mercuric ion using DNA-functionalized gold nanoparticles. Anal Chem 2008, 80: 6805–6808.
- 80Taton TA, Mirkin CA, Letsinger RL. Scanometric DNA array detection with nanoparticle probes. Science 2000, 289: 1757–1760.
- 81Xue X, Xu W, Wang F, Liu X. Multiplex single-nucleotide polymorphism typing by nanoparticle-coupled DNA-templated reactions. J Am Chem Soc 2009, 131: 11668–11669.
- 82Nam J-M, Park S-J, Mirkin CA. Bio-barcodes based on oligonucleotide-modified nanoparticles. J Am Chem Soc 2002, 124: 3820–3821.
- 83Shim S-Y, Lim D-K, Nam J-M. Ultrasensitive optical biodiagnostic methods using metallic nanoparticles. Nanomedicine 2008, 3: 215–232.
- 84Kneipp J, Kneipp H, Kneipp K. SERS-a single-molecule and nanoscale tool for bioanalytics. Chem Soc Rev 2008, 37: 1052–1060.
- 85Kneipp K, Kneipp H, Itzkan I, Dasari RR, Feld MS. Ultrasensitive chemical analysis by Raman spectroscopy. Chem Rev 1999, 99: 2957–2976.
- 86Fabris L, Dante M, Braun G, Lee SJ, Reich NO, Moskovits M, Nguyen T-Q, Bazan GC. A heterogeneous PNA-based SERS method for DNA detection. J Am Chem Soc 2007, 129: 6086–6087.
- 87Lim D-K, Jeon K-S, Kim HM, Nam J-M, Suh YD. Nanogap-engineerable Raman-active nanodumbbells for single-molecule detection. Nat Mater 2010, 9: 60–67.
- 88He L, Musick MD, Nicewarner SR, Salinas FG, Benkovic SJ, Natan MJ, Keating CD. Colloidal Au-enhanced surface plasmon resonance for ultrasensitive detection of DNA hybridization. J Am Chem Soc 2000, 122: 9071–9077.
- 89Lim D-K, Jeon K-S, Hwang J-H, Kim H, Kwon S, Suh YD, Nam J-M. Highly uniform and reproducible surface-enhanced Raman scattering from DNA-tailorable nanoparticles with 1-nm interior gap. Nat Nano 2011, 6: 452–460.
- 90Bohren CF, Huffman DR. Absorption and Scattering of Light by Small Particles. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA; 2004.
- 91Kneipp K, Wang Y, Kneipp H, Perelman LT, Itzkan I, Dasari RR, Feld MS. single molecule detection using surface-enhanced Raman scattering (SERS). Phys Rev Lett 1997, 78: 1667–1670.
- 92Graham D, Thompson DG, Smith WE, Faulds K. Control of enhanced Raman scattering using a DNA-based assembly process of dye-coded nanoparticles. Nat Nano 2008, 3: 548–551.
- 93Kurihara K, Suzuki K. Theoretical understanding of an absorption-based surface plasmon resonance sensor based on Kretchmann's theory. Anal Chem 2002, 74: 696–701.
- 94Campbell CT, Kim G. SPR microscopy and its applications to high-throughput analyses of biomolecular binding events and their kinetics. Biomaterials 2007, 28: 2380–2392.
- 95Hutter E, Pileni MP. Detection of DNA hybridization by gold nanoparticle enhanced transmission surface plasmon resonance spectroscopy. J Phys Chem B 2003, 107: 6497–6499.
- 96Shankaran DR, Gobi KV, Miura N. Recent advancements in surface plasmon resonance immunosensors for detection of small molecules of biomedical, food and environmental interest. Sensor. Actuat B-Chem 2007, 121: 158–177.
- 97Tsoi PY, Yang M. Surface plasmon resonance study of the molecular recognition between polymerase and DNA containing various mismatches and conformational changes of DNA-protein complexes. Biosens Bioelectron 2004, 19: 1209–1218.
- 98Kindermann M, George N, Johnsson N, Johnsson K. Covalent and selective immobilization of fusion proteins. J Am Chem Soc 2003, 125: 7810–7811.
- 99Baird CL, Courtenay ES, Myszka DG. Surface plasmon resonance characterization of drug/liposome interactions. Anal Biochem 2002, 310: 93–99.
- 100Lyon LA, Musick MD, Natan MJ. Colloidal Au-enhanced surface plasmon resonance immunosensing. Anal Chem 1998, 70: 5177–5183.
- 101Scanlon KJ. Cancer gene therapy: challenges and opportunities. Anticancer Res 2004, 24: 501–504.
- 102Viktoriya S, Matthias E. Inorganic nanoparticles as carriers of nucleic acids into cells. Angew Chem Int Ed 2008, 47: 1382–1395.
- 103Rosi NL, Giljohann DA, Thaxton CS, Lytton-Jean AKR, Han MS, Mirkin CA. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312: 1027–1030.
- 104Giljohann DA, Seferos DS, Prigodich AE, Patel PC, Mirkin CA. Gene regulation with polyvalent siRNA nanoparticle conjugates. J Am Chem Soc 2009, 131: 2072–2073.
- 105Seferos DS, Giljohann DA, Hill HD, Prigodich AE, Mirkin CA. Nano-flares: probes for transfection and mRNA detection in living cells. J Am Chem Soc 2007, 129: 15477–15479.
- 106Salem AK, Searson PC, Leong KW. Multifunctional nanorods for gene delivery. Nat Mater 2003, 2: 668–671.
- 107Prigodich AE, Alhasan AH, Mirkin CA. Selective enhancement of nucleases by polyvalent DNA-functionalized gold nanoparticles. J Am Chem Soc 2011, 133: 2120–2123.
- 108Weissleder R. A clearer vision for in vivo imaging. Nat Biotechnol 2001, 19: 316–317.
- 109Lee SE, Liu GL, Kim F, Lee LP. Remote optical switch for localized and selective control of gene interference. Nano Lett 2009, 9: 562–570.
- 110Huschka R, Zuloaga J, Knight MW, Brown LV, Nordlander P, Halas NJ. Light-induced release of DNA from gold nanoparticles: nanoshells and nanorods. J Am Chem Soc 2011, 133: 12247–12255.
- 111Barhoumi A, Huschka R, Bardhan R, Knight MW, Halas NJ. Light-induced release of DNA from plasmon-resonant nanoparticles: towards light-controlled gene therapy. Chem Phys Lett 2009, 482: 171–179.
- 112Yamashita S, Fukushima H, Akiyama Y, Niidome Y, Mori T, Katayama Y, Niidome T. Controlled-release system of single-stranded DNA triggered by the photothermal effect of gold nanorods and its in vivo application. Bioorg Med Chem 2011, 19: 2130–2135.
- 113Link S, Burda C, Nikoobakht B, El-Sayed MA. Laser-induced shape changes of colloidal gold nanorods using femtosecond and nanosecond laser pulses. J Phys Chem B 2000, 104: 6152–6163.
- 114Takahashi H, Niidome Y, Yamada S. Controlled release of plasmid DNA from gold nanorods induced by pulsed near-infrared light. Chem Commun 2005, 17: 2247–2249.
- 115Horiguchi Y, Niidome T, Yamada S, Nakashima N, Niidome Y. Expression of plasmid DNA released from DNA conjugates of gold nanorods. Chem Lett 2007, 36: 952–953.
- 116Chen C-C, Lin Y-P, Wang C-W, Tzeng H-C, Wu C-H, Chen Y-C, Chen C-P, Chen L-C, Wu Y-C. DNA gold nanorod conjugates for remote control of localized gene expression by near infrared irradiation. J Am Chem Soc 2006, 128: 3709–3715.
- 117Wijaya A, Schaffer SB, Pallares IG, Hamad-Schifferli K. Selective release of multiple DNA oligonucleotides from gold nanorods. ACS Nano 2008, 3: 80–86.
- 118Hamad-Schifferli K, Schwartz JJ, Santos AT, Zhang S, Jacobson JM. Remote electronic control of DNA hybridization through inductive coupling to an attached metal nanocrystal antenna. Nature 2002, 415: 152–155.
- 119Derfus AM, von Maltzahn G, Harris TJ, Duza T, Vecchio KS, Ruoslahti E, Bhatia SN. Remotely triggered release from magnetic nanoparticles. Adv Mater 2007, 19: 3932–3936.
- 120Shastry BS. SNP alleles in human disease and evolution. J Hum Genet 2002, 47: 561–566.
- 121Alexandre L. Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review). J Nutr Biochem 2003, 14: 426–451.
- 122Whibley C, Pharoah PDP, Hollstein M. p53 polymorphisms: cancer implications. Nat Rev Cancer 2009, 9: 95–107.
- 123Voetsch B, Loscalzo J. Genetic determinants of arterial thrombosis. Arterioscler, Thromb, Vasc Biol 2004, 24: 216–229.
- 124Murphy CJ, Gole AM, Stone JW, Sisco PN, Alkilany AM, Goldsmith EC, Baxter SC. Gold nanoparticles in biology: beyond toxicity to cellular imaging. Acc Chem Res 2008, 41: 1721–1730.
- 125Massich MD, Giljohann DA, Schmucker AL, Patel PC, Mirkin CA. Cellular response of polyvalent oligonucleotide-gold nanoparticle conjugates. ACS Nano 2010, 4: 5641–5646.
- 126Massich MD, Giljohann DA, Seferos DS, Ludlow LE, Horvath CM, Mirkin CA. Regulating immune response using polyvalent nucleic acid-gold nanoparticle conjugates. Mol Pharm 2009, 6: 1934–1940.
- 127Li Z, Jin RC, Mirkin CA, Letsinger RL. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res 2002, 30: 1558–1562.
- 128Jones MR, Macfarlane RJ, Lee B, Zhang J, Young KL, Senesi AJ, Mirkin CA. DNA-nanoparticle superlattices formed from anisotropic building blocks. Nat Mater 2010, 9: 913–917.
- 129Dhar S, Daniel WL, Giljohann DA, Mirkin CA, Lippard SJ. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(IV) warheads. J Am Chem Soc 2009, 131: 14652–14653.
- 130Song Y, Xu XY, MacRenaris KW, Zhang XQ, Mirkin CA, Meade TJ. Multimodal gadolinium-enriched DNA-gold nanoparticle conjugates for cellular imaging. Angew Chem Int Ed 2009, 48: 9143–9147.
- 131Medley CD, Bamrungsap S, Tan W, Smith JE. Aptamer-conjugated nanoparticles for cancer cell detection. Anal Chem 2011, 83: 727–734.
- 132Lee K, Drachev VP, Irudayaraj J. DNA-gold nanoparticle reversible networks grown on cell surface marker sites: application in diagnostics. ACS Nano 2011, 5: 2109–2117.
- 133Atkinson RL, Zhang M, Diagaradjane P, Peddibhotla S, Contreras A, Hilsenbeck SG, Woodward WA, Krishnan S, Chang JC, Rosen JM. Thermal enhancement with optically activated gold nanoshells sensitizes breast cancer stem cells to radiation therapy. Sci Transl Med 2010, 2: 55ra79.
- 134Lal S, Clare SE, Halas NJ. Nanoshell-enabled photothermal cancer therapy: impending clinical impact. Acc Chem Res 2008, 41: 1842–1851.