Structural colors: from natural to artificial systems
Yulan Fu
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorCary A. Tippets
Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorEugenii U. Donev
Department of Physics and Astronomy, The University of the South, Sewanee, TN, USA
Search for more papers by this authorCorresponding Author
Rene Lopez
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Correspondence to: [email protected]Search for more papers by this authorYulan Fu
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorCary A. Tippets
Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Search for more papers by this authorEugenii U. Donev
Department of Physics and Astronomy, The University of the South, Sewanee, TN, USA
Search for more papers by this authorCorresponding Author
Rene Lopez
Department of Physics and Astronomy, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
Correspondence to: [email protected]Search for more papers by this authorAbstract
Structural coloration has attracted great interest from scientists and engineers in recent years, owing to fascination with various brilliant examples displayed in nature as well as to promising applications of bio-inspired functional photonic structures and materials. Much research has been done to reveal and emulate the physical mechanisms that underlie the structural colors found in nature. In this article, we review the fundamental physics of many natural structural colors displayed by living organisms as well as their bio-inspired artificial counterparts, with emphasis on their connections, tunability strategies, and proposed applications, which aim to maximize the technological benefits one could derive from these photonic nanostructures. WIREs Nanomed Nanobiotechnol 2016, 8:758–775. doi: 10.1002/wnan.1396
This article is categorized under:
- Diagnostic Tools > Biosensing
- Diagnostic Tools > In Vitro Nanoparticle-Based Sensing
- Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
REFERENCES
- 1Vukusic P, Sambles JR, Lawrence CR, Wootton RJ. Quantified interference and diffraction in single Morpho butterfly scales. Proc R Soc B Biol Sci 1999, 266: 1403. doi:10.1098/rspb.1999.0794.
- 2Seago AE, Brady P, Vigneron J-P, Schultz TD. Gold bugs and beyond: a review of iridescence and structural colour mechanisms in beetles (Coleoptera). J R Soc Interface 2009, 6(Suppl 2): S165–S184. doi:10.1098/rsif.2008.0354.focus.
- 3Vignolini S, Rudall PJ, Rowland AV, Reed A, Moyroud E, Faden RB, Baumberga JJ, Gloverc BJ, Steiner U. Pointillist structural color in Pollia fruit. Proc Natl Acad Sci USA 2012, 109: 15712–15715. doi:10.1073/pnas.1210105109.
- 4Lee HS, Shim TS, Hwang H, Yang SM, Kim SH. Colloidal photonic crystals toward structural color palettes for security materials. Chem Mater 2013, 25: 2684–2690. doi:10.1021/cm4012603.
- 5Choi SY, Mamak M, Von Freymann G, Chopra N, Ozin GA. Mesoporous bragg stack color tunable sensors. Nano Lett 2006, 6: 2456–2461. doi:10.1021/nl061580m.
- 6Hwang J, Song MH, Park B, Nishimura S, Toyooka T, Wu JW, Takanishi Y, Ishikawa K, Takezoe H. Electro-tunable optical diode based on photonic bandgap liquid-crystal heterojunctions. Nat Mater 2005, 4: 383–387. doi:10.1038/nmat1377.
- 7Vigneron JP, Simonis P. Natural photonic crystals. Phys B Condens Matter 2012, 407: 4032–4036. doi:10.1016/j.physb.2011.12.130.
- 8Ingram A, Parker A. A review of the diversity and evolution of photonic structures in butterflies, incorporating the work of John Huxley (The Natural History Museum, London from 1961 to 1990). Philos Trans R Soc B Biol Sci 2008, 363: 2465–2480. doi:10.1098/rstb.2007.2258.
- 9Sorger VJ, Zhang X. Physics. Spotlight on plasmon lasers. Science 2011, 333: 709–710. doi:10.1126/science.1204862.
- 10Yu K, Fan T, Lou S, Zhang D. Biomimetic optical materials: Integration of nature's design for manipulation of light. Prog Mater Sci 2013, 58: 825–873. doi:10.1016/j.pmatsci.2013.03.003.
- 11Xu J, Guo Z. Biomimetic photonic materials with tunable structural colors. J Colloid Interface Sci 2013, 406: 1–17. doi:10.1016/j.jcis.2013.05.028.
- 12Zhao Y, Xie Z, Gu H, Zhu C, Gu Z. Bio-inspired variable structural color materials. Chem Soc Rev 2012, 41: 3297. doi:10.1039/c2cs15267c.
- 13Saito A. Corrigendum: Material design and structural color inspired by biomimetic approach. Sci Technol Adv Mater 2012, 13: 029501. doi:10.1088/1468-6996/12/6/064709.
- 14Wang H, Zhang K-Q. Photonic crystal structures with tunable structure color as colorimetric sensors. Sensors 2013, 13: 4192–4213. doi:10.3390/s130404192.
- 15Karthaus O. Biomimetics in Photonics. London: CRC Press; 2012.
10.1201/b13067 Google Scholar
- 16Yin Y. Responsive Photonic Nanostructures. London: The Royal Society of Chemistry; 2013. doi:10.1039/9781849737760.
10.1039/9781849737760 Google Scholar
- 17Kinoshita S, Yoshioka S, Miyazaki J. Physics of structural colors. Rep Prog Phys 2008, 71: 076401. doi:10.1088/0034-4885/71/7/076401.
- 18John S. Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 1987, 53: 2486–2489.
- 19Yablonovitch E. Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 1987, 58: 2059–2062. doi:10.1103/PhysRevLett.58.2059.
- 20Kinoshita S, Yoshioka S, Kawagoe K. Mechanisms of structural colour in the Morpho butterfly: cooperation of regularity and irregularity in an iridescent scale. Proc Biol Sci 2002, 269: 1417–1421. doi:10.1098/rspb.2002.2019.
- 21Okada N, Zhu D, Cai D, Cole JB, Kambe M, Kinoshita S. Rendering Morpho butterflies based on high accuracy nano-optical simulation. J Opt 2012, 42: 25–36. doi:10.1007/s12596-012-0092-y.
10.1007/s12596-012-0092-y Google Scholar
- 22Kinoshita S, Yoshioka S. Structural colors in nature: the role of regularity and irregularity in the structure. ChemPhysChem 2005, 6: 1443–1459. doi:10.1002/cphc.200500007.
- 23Zhu D, Kinoshita S, Cai D, Cole JB. Investigation of structural colors in Morpho butterflies using the nonstandard-finite-difference time-domain method: effects of alternately stacked shelves and ridge density. Phys Rev Stat Nonlinear Soft Matter Phys 2009, 80: 51924. doi:10.1098/rspb.2002.2019.
- 24Siddique RH, Diewald S, Leuthold J, Hölscher H. Theoretical and experimental analysis of the structural pattern responsible for the iridescence of Morpho butterflies. Opt Express 2013, 21: 14351–14361. doi:10.1364/OE.21.014351.
- 25Smith GS. Structural color of Morpho butterflies. Am J Phys 2009, 77: 1010. doi:10.1119/1.3192768.
- 26Kinoshita S, Yoshioka S, Fujii Y, Okamoto N. Photophysics of structural color in the Morpho butterflies. Forma Tokyo 2002, 17: 103–121.
- 27Welch VL, Vigneron JP. Beyond butterflies-the diversity of biological photonic crystals. Opt Quantum Electron 2007, 39: 295–303. doi:10.1007/s11082-007-9094-4.
- 28Parker AR, McKenzie DR. The cause of 50 million-year-old colour. Proc Biol Sci 2003, 270(Suppl): S151–S153. doi:10.1098/rsbl.2003.0055.
- 29Bartl MH, Galusha JW, Richey LR, Gardner JS, Cha JN. Discovery of a diamond-based photonic crystal structure in beetle scales. Phys Rev E Stat Nonlinear Soft Matter Phys; 2012, 77: 050904–050907. doi:10.1103/PhysRevE.77.050904.
- 30Anderson TF, Richards AG. An electron microscope study of some structural colors of insects. J Appl Phys 1942, 13: 748–758. doi:10.1063/1.1714827.
- 31 Gigantea EUCHROMa. Schillerfarben Von Euchroma Gigantea (L.): (Coleoptera: Buprestidae): Elektronenmikroskopische Untersuchung. Elytra 1972, 1: 233–240.
- 32Mitov M, Dessaud N. Depassement de la limite de reflexion de la lumiere des cristaux liquides cholesteriques: de Plusiotis resplendens aux gels a inversion d'helicite. Comptes Rendus Chim 2008, 11: 253–260. doi:10.1016/j.crci.2007.03.020.
- 33Michelson AA. On metallic colouring in birds and insects. Philos Mag 1911, 21: 554–567. doi:10.1080/14786440408637061.
- 34Caveney S. Cuticle reflectivity and optical activity in scarab beetles: the rôle of uric acid. Proc R Soc Lond B Biol Sci 1971, 178: 205–225. doi:10.1098/rspb.1971.0062.
- 35Yoshioka S, Kinoshita S. Effect of macroscopic structure in iridescent color of the peacock feathers. Forma 2002, 17: 169–181.
- 36Zi J, Yu X, Li Y, Hu X, Xu C, Wang X, Liu X, Fu R. Coloration strategies in peacock feathers. Proc Natl Acad Sci USA 2003, 100: 12576–12578. doi:10.1073/pnas.2133313100.
- 37Li Y, Lu Z, Yin H, Yu X, Liu X, Zi J. Structural origin of the brown color of barbules in male peacock tail feathers. Phys Rev E Stat Nonlinear Soft Matter Phys 2005, 72: 1–4. doi:10.1103/PhysRevE.72.010902.
- 38Osorio D, Ham AD. Spectral reflectance and directional properties of structural coloration in bird plumage. J Exp Biol 2002, 205: 2017–2027.
- 39Jun N. The iridescent colors of hummingbird feathers. J Proc Am Philos Soc 1960, 104: 249–253.
- 40Prum RO, Torres R, Williamson S, Dyck J. Two-dimensional Fourier analysis of the spongy medullary keratin of structurally coloured feather barbs. Proc R Soc B Biol Sci 1999, 266: 13–22. doi:10.1098/rspb.1999.0598.
- 41Stavenga DG, Tinbergen J, Leertouwer HL, Wilts BD. Kingfisher feathers - colouration by pigments, spongy nanostructures and thin films. J Exp Biol 2011, 214: 3960–3967. doi:10.1242/jeb.062620.
- 42Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC. Photonic crystals cause active colour change in chameleons. Nat Commun 2015, 6: 6368. doi:10.1038/ncomms7368.
- 43Saenko SV, Teyssier J, van der Marel D, Milinkovitch MC. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol 2013, 11: 105. doi:10.1186/1741-7007-11-105.
- 44Gur D, Palmer BA, Leshem B, Oron D, Fratzl P, Weiner S, Addadi L. The mechanism of color change in the neon tetra fish: a light-induced tunable photonic crystal array. Angew Chem Int Ed 2015, 54: 12426–12430. doi:10.1002/anie.201502268.
- 45Lee I, Kim D, Kal J, Baek H, Kwak D, Go D, et al. Quasi-amorphous colloidal structures for electrically tunable full-color photonic pixels with angle-independency. Adv Mater 2010, 22: 4973–4977. doi:10.1002/adma.201001954.
- 46Okubo T. In: S Kinoshita, S Yoshioka, eds. Structural Colors in Biological Systems. Princples and Applications. Osaka: Osaka University Press; 2005, 267.
- 47Potyrailo RA, Bonam RK, Hartley JG, Starkey TA, Vukusic P, Vasudev M, Bunning T, Naik RR, Tang Z, Palacios MA, et al. Towards outperforming conventional sensor arrays with fabricated individual photonic vapour sensors inspired by Morpho butterflies. Nat Commun 2015, 6: 7959. doi:10.1038/ncomms8959.
- 48Huang J, Wang X, Wang ZL. Controlled replication of butterfly wings for achieving tunable photonic properties. Nano Lett 2006, 6: 2325–2331. doi:10.1021/nl061851t.
- 49Watanabe K, Hoshino T, Kanda K, Haruyama Y, Matsui S. Brilliant blue observation from a Morpho-butterfly-scale quasi-structure. Japanese J Appl Phys Part 2 Lett 2005, 44: 1–4. doi:10.1143/JJAP.44.L48.
- 50Watanabe K, Hoshino T, Kanda K, Haruyama Y, Kaito T, Matsui S. Optical measurement and fabrication from a Morpho-butterfly-scale quasistructure by focused ion beam chemical vapor deposition. J Vac Sci Technol B Microelectron Nanom Struct 2005, 23: 570. doi:10.1116/1.1868697.
- 51Aryal M, Ko D-H, Tumbleston JR, Gadisa A, Samulski ET, Lopez R. Large area nanofabrication of butterfly wing's three dimensional ultrastructures. J Vac Sci Technol B Microelectron Nanom Struct 2012, 30: 061802. doi:10.1116/1.4759461.
- 52Wu Z, Lee D, Rubner MF, Cohen RE. Structural color in porous, superhydrophilic, and self-cleaning SiO2/TiO2 Bragg stacks. Small 2007, 3: 1445–1451. doi:10.1002/smll.200700084.
- 53Yoon J, Lee W, Thomas EL. Optically pumped surface-emitting lasing using self-assembled block-copolymer-distributed bragg reflectors. Nano Lett 2006, 6: 2211–2214. doi:10.1021/nl061490h.
- 54Davis KE, Russel WB, Glantschnig WJ. Settling suspensions of colloidal silica: observations and X-ray measurements. J Chem Soc Faraday Trans 1991, 87: 411. doi:10.1039/ft9918700411.
- 55Jiang P, Bertone J. Single-crystal colloidal multilayers of controlled thickness. Chem Mater 1999, 11: 2132–2140. doi:10.1021/cm990080+.
- 56Gu ZZ, Fujishima A, Sato O. Fabrication of high-quality opal films with controllable thickness. Chem Mater 2002, 14: 760–765. doi:10.1021/cm0108435.
- 57Prevo BG, Velev OD. Controlled, rapid deposition of structured coatings from micro- and nanoparticle suspensions. Langmuir 2004, 20: 2099–2107. doi:10.1021/la035295j.
- 58Forster JD, Noh H, Liew SF, Saranathan V, Schreck CF, Yang L, Park JG, Prum RO, Mochrie SG, O'Hern CS, et al. Biomimetic isotropic nanostructures for structural coloration. Adv Mater 2010, 22: 2939. doi:10.1002/adma.200903693.
- 59Zhang Y, Dong B, Chen A, Liu X, Shi L, Zi J. Using cuttlefish ink as an additive to produce non-iridescent structural colors of high color visibility. Adv Mater 2015, 27: 4719–4724. doi:10.1002/adma.201501936.
- 60Chung K, Yu S, Heo CJ, Shim JW, Yang SM, Han MG, Lee HS, Jin Y, Lee SY, Park N, et al. Flexible, angle-independent, structural color reflectors inspired by morpho butterfly wings. Adv Mater 2012, 24: 2375–2379. doi:10.1002/adma.201200521.
- 61Ballato J, James A. A ceramic photonic crystal temperature sensor. J Am Ceram Soc 2004, 82: 2273–2275. doi:10.1111/j.1151-2916.1999.tb02078.x.
10.1111/j.1151-2916.1999.tb02078.x Google Scholar
- 62Yoshino K, Shimoda Y, Kawagishi Y, Nakayama K, Ozaki M. Temperature tuning of the stop band in transmission spectra of liquid-crystal infiltrated synthetic opal as tunable photonic crystal. Appl Phys Lett 1999, 75: 932. doi:10.1063/1.124558.
- 63Kubo S, Gu Z-Z, Takahashi K, Ohko Y, Sato O, Fujishima A. Control of the optical band structure of liquid crystal infiltrated inverse opal by a photoinduced nematic-isotropic phase transition. J Am Chem Soc 2002, 124: 10950–10951. doi:10.1021/ja026482r.
- 64Fudouzi H, Xia Y. Colloidal crystals with tunable colors and their use as photonic papers. Langmuir 2003, 19: 9653–9660. doi:10.1021/la034918q.
- 65Fudouzi H, Sawada T. Photonic rubber sheets with tunable color by elastic deformation. Langmuir 2006, 22: 1365–1368. doi:10.1021/la0521037.
- 66Yang D, Ye S, Ge J. From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 2014, 24: 3197–3205. doi:10.1002/adfm.201303555.
- 67Ge D, Lee E, Yang L, Cho Y, Li M, Gianola DS, Yang S. A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv Mater 2015, 27: 2489–2495. doi:10.1002/adma.201500281.
- 68Kim H, Ge J, Kim J, Choi S, Lee H, Lee H, Park W, Yin Y, Kwon S. Structural colour printing using a magnetically tunable and lithographically fixable photonic crystal. Nat Photonics 2009, 3: 534–540. doi:10.1038/nphoton.2009.141.
- 69Walish JJ, Kang Y, Mickiewicz RA, Thomas EL. Tunable full-color pixels: bioinspired electrochemically tunable block copolymer full color pixels. Adv Mater 2009, 21: 1–4. doi:10.1002/adma.200990117.
- 70Matsubara K, Watanabe M, Takeoka Y. A thermally adjustable multicolor photochromic hydrogel. Angew Chem Int Ed 2007, 46: 1688–1692. doi:10.1002/anie.200603554.
- 71Greanya V. Bioinspired in Photonics: Optical Structures and Systems Inspired by Nature. Florida: CRC Press; 2015.
10.1201/b18516 Google Scholar