Novel approaches for drug delivery systems in nanomedicine: effects of particle design and shape
Nicole Daum
Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
Search for more papers by this authorClemens Tscheka
Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, Germany
Search for more papers by this authorAndrea Neumeyer
Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
Search for more papers by this authorCorresponding Author
Marc Schneider
Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, Germany
Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, GermanySearch for more papers by this authorNicole Daum
Drug Delivery, Helmholtz Institute for Pharmaceutical Research Saarland, Helmholtz Center for Infection Research, Saarland University, Saarbrücken, Germany
Search for more papers by this authorClemens Tscheka
Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, Germany
Search for more papers by this authorAndrea Neumeyer
Biopharmaceutics and Pharmaceutical Technology, Saarland University, Saarbrücken, Germany
Search for more papers by this authorCorresponding Author
Marc Schneider
Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, Germany
Pharmaceutical Nanotechnology, Saarland University, Saarbrücken, GermanySearch for more papers by this authorAbstract
The identification of novel drug candidates for the treatment of diseases like cancer, infectious diseases, or allergies (especially asthma) assigns new tasks for pharmaceutical technology. With respect to drug delivery several problems occur such as low solubility and hence low bioavailability or restriction to inconvenient routes of administration. Nanotechnological approaches promise to circumvent some of these problems, therefore being well suited for future applications as nanomedicines. Furthermore, efficient and sufficient loading is a critical issue that is approached through mesoporous particles and/or through nonspherical particles both offering larger volumes and surfaces. Special interest is laid on the effect of shape of particulate materials on the body and related physiological mechanisms. The modified response of biological systems on different shapes opens a new dimension to adjust particle system interaction. Finally, the biological response to these systems will determine the fate with respect to their therapeutic value. Therefore, the interaction pattern between nonspherical particulate materials and biological systems as well as the production processes are highlighted. WIREs Nanomed Nanobiotechnol 2012, 4:52–65. doi: 10.1002/wnan.165
This article is categorized under:
- Therapeutic Approaches and Drug Discovery > Emerging Technologies
- Nanotechnology Approaches to Biology > Nanoscale Systems in Biology
REFERENCES
- 1Brannon-Peppas L, Blanchette JO. Nanoparticle and targeted systems for cancer therapy. Adv Drug Deliv Rev 2004, 56: 1649–1659.
- 2Farokhzad OC, Langer R. Nanomedicine: developing smarter therapeutic and diagnostic modalities. Adv Drug Deliv Rev 2006, 58: 1456–1459.
- 3Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomedicine 2005, 1: 101–109.
- 4Geng Y, Dalhaimer P, Cai SS, Tsai R, Tewari M, Minko T, Discher DE. Shape effects of filaments versus spherical particles in flow and drug delivery. Nat Nanotechnol 2007, 2: 249–255.
- 5Ozin GA. Nanochemistry—synthesis in diminishing dimensions. Adv Mater 1992, 4: 612–649.
- 6Merkel TJ, Herlihy KP, Nunes J, Orgel RM, Rolland JP, Desimone JM. Scalable, shape-specific, top-down fabrication methods for the synthesis of engineered colloidal particles. Langmuir 2010, 26: 13086–13096.
- 7Decuzzi P, Pasqualini R, Arap W, Ferrari M. Intravascular delivery of particulate systems: does geometry really matter? Pharm Res 2009, 26: 235–243.
- 8Simone EA, Dziubla TD, Muzykantov VR. Polymeric carriers: role of geometry in drug delivery. Expert Opin Drug Deliv 2008, 5: 1283–1300.
- 9Labouta HI, Schneider M. Tailor-made biofunctionalized nanoparticles using layer-by-layer technology. Int J Pharm 2010, 395: 236–242.
- 10Reum N, Fink-Straube C, Klein T, Hartmann RW, Lehr C-M, Schneider M. Multilayer coating of gold nanoparticles with drug-polymer coadsorbates. Langmuir 2010, 26: 16901–16908.
- 11Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett 2006, 6: 662–668.
- 12Nikoobakht B, El-Sayed MA. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem Mat 2003, 15: 1957–1962.
- 13Barbosa S, Agrawal A, Rodriguez-Lorenzo L, Pastoriza-Santos I, Alvarez-Puebla RA, Kornowski A, Weller H, Liz-Marzan LM. Tuning size and sensing properties in colloidal gold nanostars. Langmuir 2010, 26: 14943–14950.
- 14Hutter E, Boridy S, Labrecque S, Lalancette-Hebert M, Kriz J, Winnik FM, Maysinger D. Microglial response to gold nanoparticles. ACS Nano 2010, 4: 2595–2606.
- 15Stöber W, Fink A. Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 1968, 26: 62–69.
- 16Arriagada FJ, Osseo-Asare K. Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: effects of the water/surfactant molar ratio and ammonia concentration. J Colloid Interface Sci 1999, 211: 210–220.
- 17Di Renzo F, Cambon H, Dutartre R. A 28-year-old synthesis of micelle-templated mesoporous silica. Microporous Materials 1997, 10: 283–286.
- 18Huh S, Wiench JW, Yoo JC, Pruski M, Lin VSY. Organic functionalization and morphology control of mesoporous silicas via a co-condensation synthesis method. Chem Mat 2003, 15: 4247–4256.
- 19Wang W, Gu B, Liang L, Hamilton W. Fabrication of two- and three-dimensional silica nanocolloidal particle arrays. J Phys Chem B 2003, 107: 3400–3404.
- 20Schnur JM, Ratna BR, Selinger JV, Singh A, Jyothi G, Easwaran KRK. Diacetylenic lipid tubules—experimental-evidence for a chiral molecular architecture. Science 1994, 264: 945–947.
- 21Spector MS, Selinger JV, Singh A, Rodriguez JM, Price RR, Schnur JM. Controlling the morphology of chiral lipid tubules. Langmuir 1998, 14: 3493–3500.
- 22Discher DE, Eisenberg A. Polymer vesicles. Science 2002, 297: 967–973.
- 23Walther A, Drechsler M, Rosenfeldt S, Harnau L, Ballauff M, Abetz V, Muller AHE. Self-assembly of janus cylinders into hierarchical superstructures. J Am Chem Soc 2009, 131: 4720–4728.
- 24Alemdaroglu FE, Alemdaroglu NC, Langguth P, Herrmann A. Cellular uptake of DNA block copolymer micelles with different shapes. Macromol Rapid Commun 2008, 29: 326–329.
- 25Champion JA, Mitragotri S. Role of target geometry in phagocytosis. Proc Natl Acad Sci U S A 2006, 103: 4930–4934.
- 26Illing A, Unruh T, Koch MHJ. Investigation on particle self-assembly in solid lipid-based colloidal drug carrier systems. Pharm Res 2004, 21: 592–597.
- 27Cecutti C, Focher B, Perly B, Zemb T. Glycolipid self-assembly—micellar structure. Langmuir 1991, 7: 2580–2585.
- 28Almgren M. Mixed micelles and other structures in the solubilization of bilayer lipid membranes by surfactants. Biochim Biophys Acta-Biomembr 2000, 1508: 146–163.
- 29Park JH, von Maltzahn G, Zhang LL, Schwartz MP, Ruoslahti E, Bhatia SN, et al. Magnetic iron oxide nanoworms for tumor targeting and imaging. Adv Mater 2008, 20: 1630.
- 30Walsh D, Arcelli L, Ikoma T, Tanaka J, Mann S. Dextran templating for the synthesis of metallic and metal oxide sponges. Nat Mater 2003, 2: 386–390.
- 31DeVries GA, Brunnbauer M, Hu Y, Jackson AM, Long B, Neltner BT, et al. Divalent metal nanoparticles. Science 2007, 315: 358–361.
- 32Sukhorukov GB, Donath E, Davis S, Lichtenfeld H, Caruso F, Popov VI, Mohwald H. Stepwise polyelectrolyte assembly on particle surfaces: a novel approach to colloid design. Polym Adv Technol 1998, 9: 759–767.
- 33Doshi N, Zahr AS, Bhaskar S, Lahann J, Mitragotri S. Red blood cell-mimicking synthetic biomaterial particles. Proc Natl Acad Sci U S A 2009, 106: 21495–21499.
- 34Martin CR. Nanomaterials—a membrane-based synthetic approach. Science 1994, 266: 1961–1966.
- 35Cepak VM, Martin CR. Preparation of polymeric micro- and nanostructures using a template-based deposition method. Chem Mat 1999, 11: 1363–1367.
- 36Hulteen JC, Martin CR. A general template-based method for the preparation of nanomaterials. J Mater Chem 1997, 7: 1075–1087.
- 37Apel P. Track etching technique in membrane technology. Radiat Meas 2001, 34: 559–566.
- 38Lee W, Ji R, Gosele U, Nielsch K. Fast fabrication of long-range ordered porous alumina membranes by hard anodization. Nat Mater 2006, 5: 741–747.
- 39Foss CA, Hornyak GL, Stockert JA, Martin CR. Template-synthesized nanoscopic gold particles - optical-spectra and the effects of particle-size and shape. J Phys Chem 1994, 98: 2963–2971.
- 40Kohli P, Harrell CC, Cao ZH, Gasparac R, Tan WH, Martin CR. DNA-functionalized nanotube membranes with single-base mismatch selectivity. Science 2004, 305: 984–986.
- 41Son SJ, Bai X, Nan A, Ghandehari H, Lee SB. Template synthesis of multifunctional nanotubes for controlled release. J Control Release 2006, 114: 143–152.
- 42Mitchell DT, Lee SB, Trofin L, Li NC, Nevanen TK, Soderlund H, Martin CR. Smart nanotubes for bioseparations and biocatalysis. J Am Chem Soc 2002, 124: 11864–11865.
- 43Kohler D, Schneider M, Krüger M, Lehr C-M, Möhwald H, Wang D. Template-assisted polyelectrolyte encapsulation of nanoparticles into dispersible, hierarchically nanostructured microfibers. Adv Mater 2011, 23: 1376–1379.
- 44Acharya G, Shin CS, McDermott M, Mishra H, Park H, Kwon IC, et al. The hydrogel template method for fabrication of homogeneous nano/microparticles. J Control Release 2010, 141: 314–319.
- 45Rolland JP, Maynor BW, Euliss LE, Exner AE, Denison GM, DeSimone JM. Direct fabrication and harvesting of monodisperse, shape-specific nanobiomaterials. J Am Chem Soc 2005, 127: 10096–10100.
- 46Dendukuri D, Pregibon DC, Collins J, Hatton TA, Doyle PS. Continuous-flow lithography for high-throughput microparticle synthesis. Nat Mater 2006, 5: 365–369.
- 47Kelly JY, DeSimone JM. Shape-specific, monodisperse nano-molding of protein particles. J Am Chem Soc 2008, 130: 5438.
- 48Gratton SEA, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, DeSimone JM. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci U S A 2008, 105: 11613–11618.
- 49Williams SS, Retterer S, Lopez R, Ruiz R, Samulski ET, DeSimone JM. High-resolution PFPE-based molding techniques for nanofabrication of high-pattern density, sub-20 nm features: a fundamental materials approach. Nano Lett 2010, 10: 1421–1428.
- 50Wang YP, Merkel TJ, Chen K, Fromen CA, Betts DE, DeSimone JM. Generation of a library of particles having controlled sizes and shapes via the mechanical elongation of master templates. Langmuir 2011, 27: 524–528.
- 51Glangchai LC, Caldorera-Moore M, Shi L, Roy K. Nanoimprint lithography based fabrication of shape-specific, enzymatically-triggered smart nanoparticles. J Control Release 2008, 125: 263–272.
- 52Ho CC, Keller A, Odell JA, Ottewill RH. Preparation of monodisperse ellipsoidal polystyrene particles. Colloid Polym Sci 1993, 271: 469–479.
- 53Champion JA, Katare YK, Mitragotri S. Making polymeric micro- and nanoparticles of complex shapes. Proc Natl Acad Sci U S A 2007, 104: 11901–11904.
- 54Yoo JW, Doshi N, Mitragotri S. Endocytosis and intracellular distribution of PLGA particles in endothelial cells: effect of particle geometry. Macromol Rapid Commun 2010, 31: 142–148.
- 55Iijima S. Helical microtubules of graphitic carbon. Nature 1991, 354: 56–58.
- 56Nafee N, Bhardwaj V, Schneider M. Transport across biological barriers. In: Lamprecht A, ed. Nanotherapeutics—Drug Delivery Concepts in Nanosciences. Singapore: WSPC; 2008.
10.1142/9789814241168_0002 Google Scholar
- 57Liu Z, Cai WB, He LN, Nakayama N, Chen K, Sun XM, Chen XY, Dai HJ. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat Nanotechnol 2007, 2: 47–52.
- 58Zheng LX, O'Connell MJ, Doorn SK, Liao XZ, Zhao YH, Akhadov EA, Hoffbauer MA, Roop BJ, Jia QX, Dye RC, et al. Ultralong single-wall carbon nanotubes. Nat Mater 2004, 3: 673–676.
- 59Singh R, Pantarotto D, Lacerda L, Pastorin G, Klumpp C, Prato M, Bianco A, Kostarelos K. Tissue biodistribution and blood clearance rates of intravenously administered carbon nanotube radiotracers. Proc Natl Acad Sci U S A 2006, 103: 3357–3362.
- 60Donaldson K, Aitken R, Tran L, Stone V, Duffin R, Forrest G, Alexander A. Carbon nanotubes: a review of their properties in relation to pulmonary toxicology and workplace safety. Toxicol Sci 2006, 92: 5–22.
- 61van Dillen T, Polman A, van Kats CM, van Blaaderen A. Ion beam-induced anisotropic plastic deformation at 300 keV. Appl Phys Lett 2003, 83: 4315–4317.
- 62Decuzzi P, Godin B, Tanaka T, Lee SY, Chiappini C, Liu X, Ferrari M. Size and shape effects in the biodistribution of intravascularly injected particles. J Control Release 2010, 141: 320–327.
- 63Li SL, Nickels J, Palmer AF. Liposome-encapsulated actin-hemoglobin (LEAcHb) artificial blood substitutes. Biomaterials 2005, 26: 3759–3769.
- 64Muro S, Garnacho C, Champion JA, Leferovich J, Gajewski C, Schuchman EH, Mitragotri S, Muzykantov VR. Control of endothelial targeting and intracellular delivery of therapeutic enzymes by modulating the size and shape of ICAM-1-targeted carriers. Mol Ther 2008, 16: 1450–1458.
- 65Sharma G, Valenta DT, Altman Y, Harvey S, Xie H, Mitragotri S, Smith JW. Polymer particle shape independently influences binding and internalization by macrophages. J Control Release 2010, 147: 408–412.
- 66Meng H, Yang S, Li Z, Xia T, Chen J, Ji Z, Zhang HY, Wang X, Lin SJ, Huang C, et al. Aspect ratio determines the quantity of mesoporous silica nanoparticle uptake by a small GTPase-dependent macropinocytosis mechanism. ACS Nano 2011, 5: 4434–4447.
- 67Huang X, Teng X, Chen D, Tang F, He J. The effect of the shape of mesoporous silica nanoparticles on cellular uptake and cell function. Biomaterials 2010, 31: 438–448.
- 68Herd HL, Malugin A, Ghandehari H. Silica nanoconstruct cellular toleration threshold in vitro. J Control Release 2011, 153: 40–48.
- 69Decuzzi P, Ferrari M. The receptor-mediated endocytosis of nonspherical particles. Biophys J 2008, 94: 3790–3797.
- 70Arnida Malugin A, Ghandehari H. Cellular uptake and toxicity of gold nanoparticles in prostate cancer cells: a comparative study of rods and spheres. J Appl Toxicol 2010, 30: 212–217.
- 71Rosenholm JM, Peuhu E, Bate-Eya LT, Eriksson JE, Sahlgren C, Linden M. Cancer-cell-specific induction of apoptosis using mesoporous silica nanoparticles as drug-delivery vectors. Small 2010, 6: 1234–1241.
- 72Xia T, Kovochich M, Liong M, Meng H, Kabehie S, George S, et al. Polyethyleneimine coating enhances the cellular uptake of mesoporous silica nanoparticles and allows safe delivery of siRNA and DNA constructs. ACS Nano 2009, 3: 3273–3286.
- 73Vallet-Regi M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl 2007, 46: 7548–7558.
- 74Barbé C, Bartlett J, Kong L, Finnie K, Lin HQ, Larkin M, et al. Silica particles: a novel drug-delivery system. Adv Mater 2004, 16: 1959–1966.
- 75Zhang Y, Zhi Z, Jiang T, Zhang J, Wang Z, Wang S. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release 2010, 145: 257–263.
- 76Boyd BJ, Khoo SM, Whittaker DV, Davey G, Porter CJ. A lipid-based liquid crystalline matrix that provides sustained release and enhanced oral bioavailability for a model poorly water soluble drug in rats. Int J Pharm 2007, 340: 52–60.
- 77Paulson SK, Vaughn MB, Jessen SM, Lawal Y, Gresk CJ, Yan B, Maziasz TJ, Cook CS, Karim A. Pharmacokinetics of celecoxib after oral administration in dogs and humans: effect of food and site of absorption. J Pharmacol Exp Ther 2001, 297: 638–645.
- 78Tan A, Simovic S, Davey AK, Rades T, Prestidge CA. Silica-lipid hybrid (SLH) microcapsules: a novel oral delivery system for poorly soluble drugs. J Control Release 2009, 134: 62–70.
- 79Hu KW, Hsu KC, Yeh CS. pH-dependent biodegradable silica nanotubes derived from Gd(OH)3 nanorods and their potential for oral drug delivery and MR imaging. Biomaterials 2010, 31: 6843–6848.
- 80Rimer JD, Trofymluk O, Navrotsky A, Lobo RF, Vlachos DG. Kinetic and thermodynamic studies of silica nanoparticle dissolution. Chem Mat 2007, 19: 4189–4197.