Pharmacokinetic behaviors of soft nanoparticulate formulations of chemotherapeutics
Mahua Sarkar
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Contribution: Conceptualization (supporting), Resources (equal), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYang Wang
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Contribution: Conceptualization (equal), Formal analysis (equal), Resources (equal), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorOscar Ekpenyong
Merck & Co, Rahway, New Jersey, USA
Contribution: Conceptualization (supporting), Resources (supporting), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorDong Liang
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Contribution: Conceptualization (supporting), Funding acquisition (supporting), Resources (supporting), Supervision (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Huan Xie
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Correspondence
Huan Xie, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
Email: [email protected]
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorMahua Sarkar
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Contribution: Conceptualization (supporting), Resources (equal), Writing - original draft (lead), Writing - review & editing (lead)
Search for more papers by this authorYang Wang
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Contribution: Conceptualization (equal), Formal analysis (equal), Resources (equal), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorOscar Ekpenyong
Merck & Co, Rahway, New Jersey, USA
Contribution: Conceptualization (supporting), Resources (supporting), Writing - original draft (equal), Writing - review & editing (equal)
Search for more papers by this authorDong Liang
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Contribution: Conceptualization (supporting), Funding acquisition (supporting), Resources (supporting), Supervision (supporting), Writing - original draft (supporting), Writing - review & editing (supporting)
Search for more papers by this authorCorresponding Author
Huan Xie
College of Pharmacy and Health Sciences, Texas Southern University, Houston, Texas, USA
Correspondence
Huan Xie, College of Pharmacy and Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, USA.
Email: [email protected]
Contribution: Conceptualization (lead), Funding acquisition (lead), Supervision (lead), Writing - original draft (supporting), Writing - review & editing (equal)
Search for more papers by this authorFunding information: Cancer Prevention & Research Institute of Texas, Grant/Award Number: RP180748; National Institute on Minority Health and Health Disparities, Grant/Award Number: U54MD007605
Abstract
Chemotherapeutic treatment with conventional drug formulations pose numerous challenges, such as poor solubility, high cytotoxicity and serious off-target side effects, low bioavailability, and ultimately subtherapeutic tumoral concentration leading to poor therapeutic outcomes. In the field of Nanomedicine, advances in nanotechnology have been applied with great success to design and develop novel nanoparticle-based formulations for the treatment of various types of cancer. The approval of the first nanomedicine, Doxil® (liposomal doxorubicin) in 1995, paved the path for further development for various types of novel delivery platforms. Several different types of nanoparticles, especially organic (soft) nanoparticles (liposomes, polymeric micelles, and albumin-bound nanoparticles), have been developed and approved for several anticancer drugs. Nanoparticulate drug delivery platform have facilitated to overcome of these challenges and offered key advantages of improved bioavailability, higher intra-tumoral concentration of the drug, reduced toxicity, and improved efficacy. This review introduces various commonly used nanoparticulate systems in biomedical research and their pharmacokinetic (PK) attributes, then focuses on the various physicochemical and physiological factors affecting the in vivo disposition of chemotherapeutic agents encapsulated in nanoparticles in recent years. Further, it provides a review of the current landscape of soft nanoparticulate formulations for the two most widely investigated anticancer drugs, paclitaxel, and doxorubicin, that are either approved or under investigation. Formulation details, PK profiles, and therapeutic outcomes of these novel strategies have been discussed individually and in comparison, to traditional formulations.
This article is categorized under:
- Nanotechnology Approaches to Biology > Cells at the Nanoscale
- Diagnostic Tools > In Vivo Nanodiagnostics and Imaging
- Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease
Graphical Abstract
CONFLICT OF INTEREST
The authors have no conflicts of interest to declare.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Ahmad, S., Idris, R. A. M., Wan Hanaffi, W. N., Perumal, K., Boer, J. C., Plebanski, M., Jaafar, J., Lim, J. K., & Mohamud, R. (2021). Cancer nanomedicine and immune system—Interactions and challenges. Frontiers in Nanotechnology, 3. https://doi.org/10.3389/fnano.2021.681305
- Ait-Oudhia, S., Mager, D. E., & Straubinger, R. M. (2014). Application of pharmacokinetic and pharmacodynamic analysis to the development of liposomal formulations for oncology. Pharmaceutics, 6(1), 137–174.
- Alfayez, M., Kantarjian, H., Kadia, T., Ravandi-Kashani, F., & Daver, N. (2020). CPX-351 (vyxeos) in AML. Leukemia & Lymphoma, 61(2), 288–297.
- Al-Jamal, W. T., Al-Ahmady, Z. S., & Kostarelos, K. (2012). Pharmacokinetics & tissue distribution of temperature-sensitive liposomal doxorubicin in tumor-bearing mice triggered with mild hyperthermia. Biomaterials, 33(18), 4608–4617.
- Aronson, J. K. (2016). Cremophor. In J. K. Aronson (Ed.), Meyler's side effects of drugs ( 16th ed., p. 763). Elsevier.
- Bedikian, A. Y., DeConti, R. C., Conry, R., Agarwala, S., Papadopoulos, N., Kim, K. B., & Ernstoff, M. (2011). Phase 3 study of docosahexaenoic acid-paclitaxel versus dacarbazine in patients with metastatic malignant melanoma. Annals of Oncology, 22(4), 787–793.
- Berger, M. J., Vargo, C., Vincent, M., Shaver, K., Phillips, G., Layman, R., Macrae, E., Mrozek, E., Ramaswamy, B., Wesolowski, R., Shapiro, C. L., & Lustberg, M. B. (2015). Stopping paclitaxel premedication after two doses in patients not experiencing a previous infusion hypersensitivity reaction. Support Care Cancer, 23(7), 2019–2024.
- Blanco, E., Shen, H., & Ferrari, M. (2015). Principles of nanoparticle design for overcoming biological barriers to drug delivery. Nature Biotechnology, 33(9), 941–951.
- Borga, O., Lilienberg, E., Bjermo, H., Hansson, F., Heldring, N., & Dediu, R. (2019). Pharmacokinetics of Total and unbound paclitaxel after Administration of Paclitaxel Micellar or nab-paclitaxel: An open, randomized, cross-over, explorative study in breast cancer patients. Advances in Therapy, 36(10), 2825–2837.
- Bourgeaux, V., Lanao, J. M., Bax, B. E., & Godfrin, Y. (2016). Drug-loaded erythrocytes: On the road toward marketing approval. Drug Design, Development and Therapy, 10, 665–676.
- Bourquin, J., Milosevic, A., Hauser, D., Lehner, R., Blank, F., Petri-Fink, A., & Rothen-Rutishauser, B. (2018). Biodistribution, clearance, and long-term fate of clinically relevant nanomaterials. Advanced Materials, 30(19), e1704307.
- Bradley, M. O., Swindell, C. S., Anthony, F. H., Witman, P. A., Devanesan, P., Webb, N. L., Baker, S. D., Wolff, A. C., & Donehower, R. C. (2001). Tumor targeting by conjugation of DHA to paclitaxel. Journal of Controlled Release, 74(1–3), 233–236.
- Bulbake, U., Doppalapudi, S., Kommineni, N., & Khan, W. (2017). Liposomal formulations in clinical use: An updated review. Pharmaceutics, 9(2), 12. https://doi.org/10.3390/pharmaceutics9020012
- Carter, K. A., Luo, D., Geng, J., Stern, S. T., & Lovell, J. F. (2019). Blood interactions, pharmacokinetics, and depth-dependent ablation of rat mammary tumors with photoactivatable, liposomal doxorubicin. Molecular Cancer Therapeutics, 18(3), 592–601.
- Chen, L.-T., & Su, M.-H. (2020). EndoTAG-1 plus gemcitabine versus gemcitabine alone in patients with measurable locally advanced and/or metastatic adenocarcinoma of the pancreas failed on FOLFIRINOX treatment (NCT03126435). Journal of Clinical Oncology, 38(15_suppl), TPS4669.
- Chenthamara, D., Subramaniam, S., Ramakrishnan, S. G., Krishnaswamy, S., Essa, M. M., Lin, F. H., & Qoronfleh, M. W. (2019). Therapeutic efficacy of nanoparticles and routes of administration. Biomaterials Research, 23, 20.
- Chiang, J. L., & Yang, Y. W. (2021). Modulation of the anticancer activities of paclitaxel by Cremophor micelles. International Journal of Pharmaceutics, 603, 120699.
- Chis, A. A., Dobrea, C., Morgovan, C., Arseniu, A. M., Rus, L. L., Butuca, A., Juncan, A. M., Totan, M., Vonica-Tincu, A. L., Cormos, G., Muntean, A. C., Muresan, M. L., Gligor, F. G., & Frum, A. (2020). Applications and limitations of dendrimers in biomedicine. Molecules, 25(17), 3982.
- Cho, H., Gao, J., & Kwon, G. S. (2016). PEG-b-PLA micelles and PLGA-b-PEG-b-PLGA sol-gels for drug delivery. Journal of Controlled Release, 240, 191–201.
- Daraee, H., Etemadi, A., Kouhi, M., Alimirzalu, S., & Akbarzadeh, A. (2016). Application of liposomes in medicine and drug delivery. Artificial Cells, Nanomedicine, and Biotechnology, 44(1), 381–391.
- de Oliveira Silva, J., Fernandes, R. S., Ramos Oda, C. M., Ferreira, T. H., Machado Botelho, A. F., Martins Melo, M., de Miranda, M. C., Assis Gomes, D., Dantas Cassali, G., Townsend, D. M., Rubello, D., Oliveira, M. C., & de Barros, A. L. B. (2019). Folate-coated, long-circulating and pH-sensitive liposomes enhance doxorubicin antitumor effect in a breast cancer animal model. Biomedicine & Pharmacotherapy, 118, 109323.
- Donkor, D. A., & Tang, X. S. (2014). Tube length and cell type-dependent cellular responses to ultra-short single-walled carbon nanotube. Biomaterials, 35(9), 3121–3131.
- Ealias, A. M., & Saravanakumar, M. P. (2017). A review on the classification, characterisation, synthesis of nanoparticles and their application. IOP Conference Series: Materials Science and Engineering, 263, 032019.
- Estelrich, J., Quesada-Pérez, M., Forcada, J., & Callejas-Fernández, J. (2014). Introductory aspects of soft nanoparticles. Royal Society of Chemistry.
- Falah, M., Rayan, M., & Rayan, A. (2019). A novel paclitaxel conjugate with higher efficiency and lower toxicity: A new drug candidate for cancer treatment. International Journal of Molecular Sciences, 20(19), 4965.
- Farr, N., Wang, Y.-N., D'Andrea, S., Starr, F., Partanen, A., Gravelle, K. M., McCune, J. S., Risler, L. J., Whang, S. G., & Chang, A. (2018). Hyperthermia-enhanced targeted drug delivery using magnetic resonance-guided focussed ultrasound: A pre-clinical study in a genetic model of pancreatic cancer. International Journal of Hyperthermia, 34(3), 284–291.
- Fetterly, G. J., & Straubinger, R. M. (2003). Pharmacokinetics of paclitaxel-containing liposomes in rats. AAPS PharmSci, 5(4), E32.
- Gelderblom, H., Verweij, J., Nooter, K., & Sparreboom, A. (2001). Cremophor EL: The drawbacks and advantages of vehicle selection for drug formulation. European Journal of Cancer, 37(13), 1590–1598.
- Goncalves, M., Mignani, S., Rodrigues, J., & Tomas, H. (2020). A glance over doxorubicin based-nanotherapeutics: From proof-of-concept studies to solutions in the market. Journal of Controlled Release, 317, 347–374.
- Greene, R. F., Collins, J. M., Jenkins, J. F., Speyer, J. L., & Myers, C. E. (1983). Plasma pharmacokinetics of adriamycin and adriamycinol: Implications for the design of in vitro experiments and treatment protocols. Cancer Research, 43(7), 3417–3421.
- Gupta, A., & Middleton, M. (2011). Chapter 45—Cytostatic and cytotoxic drugs. In J. K. Aronson (Ed.), Side effects of drugs annual (Vol. 33, pp. 935–962). Elsevier.
- Gyongyosi, M., Lukovic, D., Zlabinger, K., Spannbauer, A., Gugerell, A., Pavo, N., Traxler, D., Pils, D., Maurer, G., Jakab, A., Riesenhuber, M., Pircher, A., Winkler, J., & Bergler-Klein, J. (2020). Liposomal doxorubicin attenuates cardiotoxicity via induction of interferon-related DNA damage resistance. Cardiovascular Research, 116(5), 970–982.
- Harashima, H., Tsuchihashi, M., Iida, S., Doi, H., & Kiwada, H. (1999). Pharmacokinetic/pharmacodynamic modeling of antitumor agents encapsulated into liposomes. Advanced Drug Delivery Reviews, 40(1–2), 39-61.
- He, Z., Wan, X., Schulz, A., Bludau, H., Dobrovolskaia, M. A., Stern, S. T., Montgomery, S. A., Yuan, H., Li, Z., Alakhova, D., Sokolsky, M., Darr, D. B., Perou, C. M., Jordan, R., Luxenhofer, R., & Kabanov, A. V. (2016). A high capacity polymeric micelle of paclitaxel: Implication of high dose drug therapy to safety and in vivo anti-cancer activity. Biomaterials, 101, 296–309.
- Hennenfent, K. L., & Govindan, R. (2006). Novel formulations of taxanes: A review. Old wine in a new bottle? Annals of Oncology, 17(5), 735–749.
- Henningsson, A., Sparreboom, A., Sandstrom, M., Freijs, A., Larsson, R., Bergh, J., Nygren, P., & Karlsson, M. O. (2003). Population pharmacokinetic modelling of unbound and total plasma concentrations of paclitaxel in cancer patients. European Journal of Cancer, 39(8), 1105–1114.
- Hertz, D. L., Kidwell, K. M., Vangipuram, K., Li, F., Pai, M. P., Burness, M., Griggs, J. J., Schott, A. F., Van Poznak, C., Hayes, D. F., Lavoie Smith, E. M., & Henry, N. L. (2018). Paclitaxel plasma concentration after the first infusion predicts treatment-limiting peripheral neuropathy. Clinical Cancer Research, 24(15), 3602–3610.
- Ho, L., Bokharaei, M., & Li, S. D. (2018). Current update of a thermosensitive liposomes composed of DPPC and Brij78. Journal of Drug Targeting, 26(5–6), 407–419.
- InnoMedica. (2022). Talidox. Retrieved from https://innomedica.com/en/products/talidox/.
- Kaitu'u-Lino, T. J., Pattison, S., Ye, L., Tuohey, L., Sluka, P., MacDiarmid, J., Brahmbhatt, H., Johns, T., Horne, A. W., Brown, J., & Tong, S. (2013). Targeted nanoparticle delivery of doxorubicin into placental tissues to treat ectopic pregnancies. Endocrinology, 154(2), 911–919.
- Karimi, M., Bahrami, S., Ravari, S. B., Zangabad, P. S., Mirshekari, H., Bozorgomid, M., Shahreza, S., Sori, M., & Hamblin, M. R. (2016). Albumin nanostructures as advanced drug delivery systems. Expert Opinion in Drug Delivery, 13(11), 1609–1623.
- Kong, G., & Dewhirst, M. W. (1999). Hyperthermia and liposomes. International Journal of Hyperthermia, 15(5), 345–370.
- Kumthekar, P., Tang, S. C., Brenner, A. J., Kesari, S., Piccioni, D. E., Anders, C., Carrillo, J., Chalasani, P., Kabos, P., Puhalla, S., Tkaczuk, K., Garcia, A. A., Ahluwalia, M. S., Wefel, J. S., Lakhani, N., & Ibrahim, N. (2020). ANG1005, a brain-penetrating peptide-drug conjugate, shows activity in patients with breast cancer with leptomeningeal Carcinomatosis and recurrent brain metastases. Clinical Cancer Research, 26(12), 2789–2799.
- Lammers, T. (2019). Macro-nanomedicine: Targeting the big picture. Journal of Controlled Release, 294, 372–375.
- Lancet, J. E., Uy, G. L., Cortes, J. E., Newell, L. F., Lin, T. L., Ritchie, E. K., Stuart, R. K., Strickland, S. A., Hogge, D., Solomon, S. R., Stone, R. M., Bixby, D. L., Kolitz, J. E., Schiller, G. J., Wieduwilt, M. J., Ryan, D. H., Hoering, A., Banerjee, K., Chiarella, M., … Medeiros, B. C. (2018). CPX-351 (cytarabine and daunorubicin) liposome for injection versus conventional cytarabine plus daunorubicin in older patients with newly diagnosed secondary acute myeloid leukemia. Journal of Clinical Oncology, 36(26), 2684–2692.
- Lao, J., Madani, J., Puertolas, T., Alvarez, M., Hernandez, A., Pazo-Cid, R., Artal, A., & Anton Torres, A. (2013). Liposomal doxorubicin in the treatment of breast cancer patients: A review. Journal of Drug Delivery, 2013, 456409.
- Lee, S. W., Kim, Y. M., Cho, C. H., Kim, Y. T., Kim, S. M., Hur, S. Y., Kim, J. H., Kim, B. G., Kim, S. C., Ryu, H. S., & Kang, S. B. (2018). An open-label, randomized, parallel, phase II trial to evaluate the efficacy and safety of a Cremophor-free polymeric micelle formulation of paclitaxel as first-line treatment for ovarian cancer: A Korean gynecologic oncology group study (KGOG-3021). Cancer Research and Treatment, 50(1), 195–203.
- Li, C., Lai, C., Qiu, Q., Luo, X., Hu, L., Zheng, H., Lu, Y., Liu, M., Zhang, H., Liu, X., Deng, Y., & Song, Y. (2019). Dual-ligand modification of PEGylated liposomes used for targeted doxorubicin delivery to enhance anticancer efficacy. AAPS PharmSciTech, 20(5), 188.
- Li, F., Zhang, H., He, M., Liao, J., Chen, N., Li, Y., Zhou, S., Palmisano, M., Yu, A., Pai, M. P., Yuan, H., & Sun, D. (2018). Different Nanoformulations Alter the tissue distribution of paclitaxel, which aligns with reported distinct efficacy and safety profiles. Molecular Pharmaceutics, 15(10), 4505–4516.
- Li, Q., Zhang, H., Zhu, X., Liu, C., Wu, M., Li, C., Li, X., Gao, L., & Ding, Y. (2018). Tolerance, variability and pharmacokinetics of albumin-bound paclitaxel in Chinese breast cancer patients. Frontiers in Pharmacology, 9, 1372.
- Li, Y., Chen, N., Palmisano, M., & Zhou, S. (2015). Pharmacologic sensitivity of paclitaxel to its delivery vehicles drives distinct clinical outcomes of paclitaxel formulations. Molecular Pharmaceutics, 12(4), 1308–1317.
- Lin, Z., Monteiro-Riviere, N. A., & Riviere, J. E. (2015). Pharmacokinetics of metallic nanoparticles. WIREs Nanomedicine and Nanobiotechnology, 7(2), 189–217.
- Liu, E., Zhang, M., & Huang, Y. (2016). Pharmacokinetics and pharmacodynamics (PK/PD) of bionanomaterials. Biomedical Nanomaterials, 1–60.
- Lohade, A. A., Jain, R. R., Iyer, K., Roy, S. K., Shimpi, H. H., Pawar, Y., Rajan, M. G., & Menon, M. D. (2016). A novel folate-targeted Nanoliposomal system of doxorubicin for cancer targeting. AAPS PharmSciTech, 17(6), 1298–1311.
- Lucas, A., Lam, D., & Cabrales, P. (2019). Doxorubicin-loaded red blood cells reduced cardiac toxicity and preserved anticancer activity. Drug Delivery, 26(1), 433–442.
- Luo, D., Carter, K. A., Razi, A., Geng, J., Shao, S., Giraldo, D., Sunar, U., Ortega, J., & Lovell, J. F. (2016). Doxorubicin encapsulated in stealth liposomes conferred with light-triggered drug release. Biomaterials, 75, 193–202.
- Lyon, P. C., Mannaris, C., Gray, M., Carlisle, R., Gleeson, F. V., Cranston, D., Wu, F., & Coussios, C. C. (2021). Large-volume hyperthermia for safe and cost-effective targeted drug delivery using a clinical ultrasound-guided focused ultrasound device. Ultrasound in Medicine & Biology, 47(4), 982–997.
- Ma, P., & Mumper, R. J. (2013). Paclitaxel nano-delivery systems: A comprehensive review. Journal of Nanomedicine & Nanotechnology, 4(2), 1000164.
- MacDiarmid, J. A., Langova, V., Bailey, D., Pattison, S. T., Pattison, S. L., Christensen, N., Armstrong, L. R., Brahmbhatt, V. N., Smolarczyk, K., Harrison, M. T., Costa, M., Mugridge, N. B., Sedliarou, I., Grimes, N. A., Kiss, D. L., Stillman, B., Hann, C. L., Gallia, G. L., Graham, R. M., & Brahmbhatt, H. (2016). Targeted doxorubicin delivery to brain tumors via Minicells: Proof of principle using dogs with spontaneously occurring tumors as a model. PLoS One, 11(4), e0151832.
- MacDiarmid, J. A., Mugridge, N. B., Weiss, J. C., Phillips, L., Burn, A. L., Paulin, R. P., Haasdyk, J. E., Dickson, K. A., Brahmbhatt, V. N., Pattison, S. T., James, A. C., Al Bakri, G., Straw, R. C., Stillman, B., Graham, R. M., & Brahmbhatt, H. (2007). Bacterially derived 400 nm particles for encapsulation and cancer cell targeting of chemotherapeutics. Cancer Cell, 11(5), 431–445.
- Magin, R. L., & Niesman, M. R. (1984). Temperature-dependent drug release from large unilamellar liposomes. Cancer Drug Delivery, 1(2), 109–117.
- Miller, M. A., Zheng, Y. R., Gadde, S., Pfirschke, C., Zope, H., Engblom, C., Kohler, R. H., Iwamoto, Y., Yang, K. S., Askevold, B., Kolishetti, N., Pittet, M., Lippard, S. J., Farokhzad, O. C., & Weissleder, R. (2015). Tumour-associated macrophages act as a slow-release reservoir of nano-therapeutic Pt(IV) pro-drug. Nature Communications, 6, 8692.
- Mitchell, M. J., Billingsley, M. M., Haley, R. M., Wechsler, M. E., Peppas, N. A., & Langer, R. (2021). Engineering precision nanoparticles for drug delivery. Nature Reviews. Drug Discovery, 20(2), 101–124.
- Nan, A. (2015). Chapter 47—Miscellaneous drugs, materials, medical devices and techniques. In S. D. Ray (Ed.), Side effects of drugs annual (Vol. 37, pp. 603–619). Elsevier.
- Nardecchia, S., Sanchez-Moreno, P., Vicente, J., Marchal, J. A., & Boulaiz, H. (2019). Clinical trials of Thermosensitive nanomaterials: An overview. Nanomaterials (Basel), 9(2), 191.
- Navya, P. N., Kaphle, A., Srinivas, S. P., Bhargava, S. K., Rotello, V. M., & Daima, H. K. (2019). Current trends and challenges in cancer management and therapy using designer nanomaterials. Nano Convergence, 6(1), 23.
- Nieuweboer, A. J., Hu, S., Gui, C., Hagenbuch, B., Ghobadi Moghaddam-Helmantel, I. M., Gibson, A. A., de Bruijn, P., Mathijssen, R. H., & Sparreboom, A. (2014). Influence of drug formulation on OATP1B-mediated transport of paclitaxel. Cancer Research, 74(11), 3137–3145.
- Onafuye, H., Pieper, S., Mulac, D., Cinatl, J., Jr., Wass, M. N., Langer, K., & Michaelis, M. (2019). Doxorubicin-loaded human serum albumin nanoparticles overcome transporter-mediated drug resistance in drug-adapted cancer cells. Beilstein Journal of Nanotechnology, 10, 1707–1715.
- Parhiz, H., Khoshnejad, M., Myerson, J. W., Hood, E., Patel, P. N., Brenner, J. S., & Muzykantov, V. R. (2018). Unintended effects of drug carriers: Big issues of small particles. Advanced Drug Delivery Reviews, 130, 90–112.
- Patra, J. K., Das, G., Fraceto, L. F., Campos, E. V. R., Rodriguez-Torres, M. D. P., Acosta-Torres, L. S., Diaz-Torres, L. A., Grillo, R., Swamy, M. K., Sharma, S., Habtemariam, S., & Shin, H. S. (2018). Nano based drug delivery systems: Recent developments and future prospects. Journal of Nanobiotechnology, 16(1), 71.
- Payne, M., Ellis, P., Dunlop, D., Ranson, M., Danson, S., Schacter, L., & Talbot, D. (2006). DHA-paclitaxel (Taxoprexin) as first-line treatment in patients with stage IIIB or IV non-small cell lung cancer: Report of a phase II open-label multicenter trial. Journal of Thoracic Oncology, 1(9), 984–990.
- Pieper, S., Onafuye, H., Mulac, D., Cinatl, J., Jr., Wass, M. N., Michaelis, M., & Langer, K. (2019). Incorporation of doxorubicin in different polymer nanoparticles and their anticancer activity. Beilstein Journal of Nanotechnology, 10, 2062–2072.
- Prados, J., Melguizo, C., Ortiz, R., Velez, C., Alvarez, P. J., Arias, J. L., Ruiz, M. A., Gallardo, V., & Aranega, A. (2012). Doxorubicin-loaded nanoparticles: New advances in breast cancer therapy. Anti-Cancer Agents in Medicinal Chemistry, 12(9), 1058–1070.
- Price, L. S. L., Stern, S. T., Deal, A. M., Kabanov, A. V., & Zamboni, W. C. (2020). A reanalysis of nanoparticle tumor delivery using classical pharmacokinetic metrics. Science Advances, 6(29), eaay9249.
- Reckelhoff, C. R., Lejeune, A., Thompson, P. M., & Shiomitsu, K. (2019). In vitro effects of the chemotherapy agent water-soluble micellar paclitaxel (Paccal vet) on canine hemangiosarcoma cell lines. Veterinary and Comparative Oncology, 17(1), 32–41.
- Rennick, J. J., Johnston, A. P. R., & Parton, R. G. (2021). Key principles and methods for studying the endocytosis of biological and nanoparticle therapeutics. Nature Nanotechnology, 16(3), 266–276.
- Rodallec, A., Fanciullino, R., Lacarelle, B., & Ciccolini, J. (2018). Seek and destroy: Improving PK/PD profiles of anticancer agents with nanoparticles. Expert Review of Clinical Pharmacology, 11(6), 599–610.
- Sagnella, S. M., Yang, L., Stubbs, G. E., Boslem, E., Martino-Echarri, E., Smolarczyk, K., Pattison, S. L., Vanegas, N., St Clair, E., Clarke, S., Boockvar, J., MacDiarmid, J. A., & Brahmbhatt, H. (2020). Cyto-immuno-therapy for cancer: A pathway elicited by tumor-targeted, cytotoxic drug-packaged bacterially derived nanocells. Cancer Cell, 37(3), 354–370 e357.
- Salvioni, L., Rizzuto, M. A., Bertolini, J. A., Pandolfi, L., Colombo, M., & Prosperi, D. (2019). Thirty years of cancer nanomedicine: Success, frustration, and Hope. Cancers (Basel), 11(12), 1855.
- Sangtani, A., Nag, O. K., Field, L. D., Breger, J. C., & Delehanty, J. B. (2017). Multifunctional nanoparticle composites: Progress in the use of soft and hard nanoparticles for drug delivery and imaging. WIREs Nanomedicine and Nanobiotechnology, 9(6), e1466.
- Scripture, C. D., Figg, W. D., & Sparreboom, A. (2005). Paclitaxel chemotherapy: From empiricism to a mechanism-based formulation strategy. Therapeutics and Clinical Risk Management, 1(2), 107–114.
- Seleci, M., Seleci, D. A., Joncyzk, R., Stahl, F., Blume, C., & Scheper, T. (2016). Smart multifunctional nanoparticles in nanomedicine. BioNanoMaterials, 17(1–2), 33–41.
- Shi, Y., van der Meel, R., Chen, X., & Lammers, T. (2020). The EPR effect and beyond: Strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics, 10(17), 7921–7924.
- Sindhwani, S., Syed, A. M., Ngai, J., Kingston, B. R., Maiorino, L., Rothschild, J., MacMillan, P., Zhang, Y., Rajesh, N. U., Hoang, T., Wu, J. L. Y., Wilhelm, S., Zilman, A., Gadde, S., Sulaiman, A., Ouyang, B., Lin, Z., Wang, L., Egeblad, M., & Chan, W. C. W. (2020). The entry of nanoparticles into solid tumours. Nature Materials, 19(5), 566–575.
- Skorokhod, O., Kulikova, E. V., Galkina, N. M., Medvedev, P. V., Zybunova, E. E., Vitvitsky, V. M., Pivnik, A. V., & Ataullakhanov, F. I. (2007). Doxorubicin pharmacokinetics in lymphoma patients treated with doxorubicin-loaded erythrocytes. Haematologica, 92(4), 570–571.
- Slingerland, M., Guchelaar, H. J., Rosing, H., Scheulen, M. E., van Warmerdam, L. J., Beijnen, J. H., & Gelderblom, H. (2013). Bioequivalence of liposome-entrapped paclitaxel easy-to-use (LEP-ETU) formulation and paclitaxel in polyethoxylated castor oil: A randomized, two-period crossover study in patients with advanced cancer. Clinical Therapeutics, 35(12), 1946–1954.
- Sofias, A. M., Dunne, M., Storm, G., & Allen, C. (2017). The battle of “nano” paclitaxel. Advanced Drug Delivery Reviews, 122, 20–30.
- Soininen, S. K., Vellonen, K. S., Heikkinen, A. T., Auriola, S., Ranta, V. P., Urtti, A., & Ruponen, M. (2016). Intracellular PK/PD relationships of free and liposomal doxorubicin: Quantitative analyses and PK/PD modeling. Molecular Pharmaceutics, 13(4), 1358–1365.
- Sparreboom, A., Scripture, C. D., Trieu, V., Williams, P. J., De, T., Yang, A., Beals, B., Figg, W. D., Hawkins, M., & Desai, N. (2005). Comparative preclinical and clinical pharmacokinetics of a cremophor-free, nanoparticle albumin-bound paclitaxel (ABI-007) and paclitaxel formulated in Cremophor (Taxol). Clinical Cancer Research, 11(11), 4136–4143.
- Sparreboom, A., van Tellingen, O., Nooijen, W. J., & Beijnen, J. H. (1996). Nonlinear pharmacokinetics of paclitaxel in mice results from the pharmaceutical vehicle Cremophor EL. Cancer Research, 56(9), 2112–2115.
- Sparreboom, A., Wolff, A. C., Verweij, J., Zabelina, Y., van Zomeren, D. M., McIntire, G. L., Swindell, C. S., Donehower, R. C., & Baker, S. D. (2003). Disposition of docosahexaenoic acid-paclitaxel, a novel taxane, in blood: In vitro and clinical pharmacokinetic studies. Clinical Cancer Research, 9(1), 151–159.
- Stage, T. B., Bergmann, T. K., & Kroetz, D. L. (2018). Clinical pharmacokinetics of paclitaxel monotherapy: An updated literature review. Clinical Pharmacokinetics, 57(1), 7–19.
- Stage, T. B., Hu, S., Sparreboom, A., & Kroetz, D. L. (2021). Role for drug transporters in chemotherapy-induced peripheral neuropathy. Clinical and Translational Science, 14(2), 460–467.
- Steffes, V. M., Murali, M. M., Park, Y., Fletcher, B. J., Ewert, K. K., & Safinya, C. R. (2017). Distinct solubility and cytotoxicity regimes of paclitaxel-loaded cationic liposomes at low and high drug content revealed by kinetic phase behavior and cancer cell viability studies. Biomaterials, 145, 242–255.
- Sun, D., Zhou, S., & Gao, W. (2020). What went wrong with anticancer Nanomedicine design and how to make it right. ACS Nano, 14(10), 12281–12290.
- Sun, Y., Su, J., Liu, G., Chen, J., Zhang, X., Zhang, R., Jiang, M., & Qiu, M. (2017). Advances of blood cell-based drug delivery systems. European Journal of Pharmaceutical Sciences, 96, 115–128.
- Sung, H., Ferlay, J., Siegel, R. L., Laversanne, M., Soerjomataram, I., Jemal, A., & Bray, F. (2021). Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: A Cancer Journal for Clinicians, 71(3), 209–249.
- Swenson, C. E., Haemmerich, D., Maul, D. H., Knox, B., Ehrhart, N., & Reed, R. A. (2015). Increased duration of heating boosts local drug deposition during radiofrequency ablation in combination with thermally sensitive liposomes (ThermoDox) in a porcine model. PLoS One, 10(10), e0139752.
- Tak, W. Y., Lin, S. M., Wang, Y., Zheng, J., Vecchione, A., Park, S. Y., Chen, M. H., Wong, S., Xu, R., Peng, C. Y., Chiou, Y. Y., Huang, G. T., Cai, J., Abdullah, B. J. J., Lee, J. S., Lee, J. Y., Choi, J. Y., Gopez-Cervantes, J., Sherman, M., … Lencioni, R. (2018). Phase III HEAT study adding lyso-thermosensitive liposomal doxorubicin to radiofrequency ablation in patients with unresectable hepatocellular carcinoma lesions. Clinical Cancer Research, 24(1), 73–83.
- Tang, Y., Wang, X., Li, J., Nie, Y., Liao, G., Yu, Y., & Li, C. (2019). Overcoming the reticuloendothelial system barrier to drug delivery with a “Don't-eat-us” strategy. ACS Nano, 13(11), 13015–13026.
- Taylor, K., Howard, C. B., Jones, M. L., Sedliarou, I., MacDiarmid, J., Brahmbhatt, H., Munro, T. P., & Mahler, S. M. (2015). Nanocell targeting using engineered bispecific antibodies. MAbs, 7(1), 53–65.
- van Zuylen, L., Karlsson, M. O., Verweij, J., Brouwer, E., de Bruijn, P., Nooter, K., Stoter, G., & Sparreboom, A. (2001). Pharmacokinetic modeling of paclitaxel encapsulation in Cremophor EL micelles. Cancer Chemotherapy and Pharmacology, 47(4), 309–318.
- Vergote, I., Bergfeldt, K., Franquet, A., Lisyanskaya, A. S., Bjermo, H., Heldring, N., Buyse, M., & Brize, A. (2020). A randomized phase III trial in patients with recurrent platinum sensitive ovarian cancer comparing efficacy and safety of paclitaxel micellar and cremophor EL-paclitaxel. Gynecologic Oncology, 156(2), 293–300.
- Wang, F., Porter, M., Konstantopoulos, A., Zhang, P., & Cui, H. (2017). Preclinical development of drug delivery systems for paclitaxel-based cancer chemotherapy. Journal of Controlled Release, 267, 100–118.
- Weaver, B. A. (2014). How taxol/paclitaxel kills cancer cells. Molecular Biology of the Cell, 25(18), 2677–2681.
- Whittle, J. R., Lickliter, J. D., Gan, H. K., Scott, A. M., Simes, J., Solomon, B. J., MacDiarmid, J. A., Brahmbhatt, H., & Rosenthal, M. A. (2015). First in human nanotechnology doxorubicin delivery system to target epidermal growth factor receptors in recurrent glioblastoma. Journal of Clinical Neuroscience, 22(12), 1889–1894.
- Wood, B. J., Poon, R. T., Locklin, J. K., Dreher, M. R., Ng, K. K., Eugeni, M., Seidel, G., Dromi, S., Neeman, Z., Kolf, M., Black, C. D., Prabhakar, R., & Libutti, S. K. (2012). Phase I study of heat-deployed liposomal doxorubicin during radiofrequency ablation for hepatic malignancies. Journal of Vascular and Interventional Radiology, 23(2), 248–255.e247.
- Xie, Q., Deng, W., Yuan, X., Wang, H., Ma, Z., Wu, B., & Zhang, X. (2018). Selenium-functionalized liposomes for systemic delivery of doxorubicin with enhanced pharmacokinetics and anticancer effect. European Journal of Pharmaceutics and Biopharmaceutics, 122, 87–95.
- Xu, P., Wang, R., Wang, X., & Ouyang, J. (2016). Recent advancements in erythrocytes, platelets, and albumin as delivery systems. Oncotargets and Therapy, 9, 2873–2884.
- Ye, L., He, J., Hu, Z., Dong, Q., Wang, H., Fu, F., & Tian, J. (2013). Antitumor effect and toxicity of Lipusu in rat ovarian cancer xenografts. Food and Chemical Toxicology, 52, 200–206.
- Yetisgin, A. A., Cetinel, S., Zuvin, M., Kosar, A., & Kutlu, O. (2020). Therapeutic nanoparticles and their targeted delivery applications. Molecules, 25(9), 2193.
- Yingchoncharoen, P., Kalinowski, D. S., & Richardson, D. R. (2016). Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacological Reviews, 68(3), 701–787.
- Zhang, J. A., Anyarambhatla, G., Ma, L., Ugwu, S., Xuan, T., Sardone, T., & Ahmad, I. (2005). Development and characterization of a novel Cremophor® EL free liposome-based paclitaxel (LEP-ETU) formulation. European Journal of Pharmaceutics and Biopharmaceutics, 59(1), 177–187. https://doi.org/10.1016/j.ejpb.2004.06.009
- Zhang, M., Gao, S., Yang, D., Fang, Y., Lin, X., Jin, X., Liu, Y., Liu, X., Su, K., & Shi, K. (2021). Influencing factors and strategies of enhancing nanoparticles into tumors in vivo. Acta Pharmaceutica Sinica B, 11(8), 2265–2285.
- Zheng, N., Lian, B., Xu, G., Liu, X., Li, X., & Ji, J. (2019). Development of a subcellular semimechanism-based pharmacokinetic/pharmacodynamic model to characterize paclitaxel effects delivered by polymeric micelles. Journal of Pharmaceutical Sciences, 108(1), 725–731.
- Zhou, H., Yan, J., Chen, W., Yang, J., Liu, M., Zhang, Y., Shen, X., Ma, Y., Hu, X., Wang, Y., Du, K., & Li, G. (2021). Population pharmacokinetics and exposure–safety relationship of paclitaxel liposome in patients with non-small cell lung cancer. Frontiers in Oncology, 10. https://doi.org/10.3389/fonc.2020.01731