Contributions of regulated transcription and mRNA decay to the dynamics of gene expression
Toshimichi Yamada
Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Nobuyoshi Akimitsu
Isotope Science Center, University of Tokyo, Tokyo, Japan
Correspondence
Nobuyoshi Akimitsu, Isotope Science Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
Email: [email protected]
Search for more papers by this authorToshimichi Yamada
Department of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo, Japan
Search for more papers by this authorCorresponding Author
Nobuyoshi Akimitsu
Isotope Science Center, University of Tokyo, Tokyo, Japan
Correspondence
Nobuyoshi Akimitsu, Isotope Science Center, University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
Email: [email protected]
Search for more papers by this authorAbstract
Organisms have acquired sophisticated regulatory networks that control gene expression in response to cellular perturbations. Understanding of the mechanisms underlying the coordinated changes in gene expression in response to external and internal stimuli is a fundamental issue in biology. Recent advances in high-throughput technologies have enabled the measurement of diverse biological information, including gene expression levels, kinetics of gene expression, and interactions among gene expression regulatory molecules. By coupling these technologies with quantitative modeling, we can now uncover the biological roles and mechanisms of gene regulation at the system level. This review consists of two parts. First, we focus on the methods using uridine analogs that measure synthesis and decay rates of RNAs, which demonstrate how cells dynamically change the regulation of gene expression in response to both internal and external cues. Second, we discuss the underlying mechanisms of these changes in kinetics, including the functions of transcription factors and RNA-binding proteins. Overall, this review will help to clarify a system-level view of gene expression programs in cells.
This article is categorized under:
- Regulatory RNAs/RNAi/Riboswitches > Regulatory RNAs
- RNA Turnover and Surveillance > Regulation of RNA Stability
- RNA Methods > RNA Analyses in vitro and In Silico
Graphical Abstract
Transcriptional factors (TFs) regulate mRNA synthesis whereas RNA-binding proteins (RBPs) regulate mRNA fate, such as stability. Various genome-wide approaches provide the information for analyzing the function of the gene expression regulators. From these genome-wide data, computational analysis constructs gene regulatory networks.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Supporting Information
Filename | Description |
---|---|
wrna1508-sup-0001-Table.pdfPDF document, 3 MB | Table S1 List of RNA-binding transcription factors. |
Please note: The publisher is not responsible for the content or functionality of any supporting information supplied by the authors. Any queries (other than missing content) should be directed to the corresponding author for the article.
REFERENCES
- Alon, U. (2007). Network motifs: Theory and experimental approaches. Nature Reviews. Genetics, 8, 450–461.
- Amit, I., Garber, M., Chevrier, N., Leite, A. P., Donner, Y., Eisenhaure, T., … Regev, A. (2009). Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science, 326, 257–263.
- Arbeitman, M. N., Furlong, E. E., Imam, F., Johnson, E., Null, B. H., Baker, B. S., … White, K. P. (2002). Gene expression during the life cycle of Drosophila melanogaster. Science, 297, 2270–2275.
- Arthur, L. L., & Djuranovic, S. (2018). PolyA tracks, polybasic peptides, poly-translational hurdles. WIREs RNA, 9, e1486. https://doi.org/10.1002/wrna.1486
- Baltz, A. G., Munschauer, M., Schwanhäusser, B., Vasile, A., Murakawa, Y., Schueler, M., … Landthaler, M. (2012). The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Molecular Cell, 46, 674–690.
- Bao, X., Guo, X., Yin, M., Tariq, M., Lai, Y., Kanwal, S., … Esteban, M. A. (2018). Capturing the interactome of newly transcribed RNA. Nature Methods, 15, 213–220.
- Bar-Joseph, Z., Gerber, G. K., Lee, T. I., Rinaldi, N. J., Yoo, J. Y., Robert, F., … Gifford, D. K. (2003). Computational discovery of gene modules and regulatory networks. Nature Biotechnology, 21, 1337–1342.
- Bar-Joseph, Z., Siegfried, Z., Brandeis, M., Brors, B., Lu, Y., Eils, R., … Simon, I. (2008). Genome-wide transcriptional analysis of the human cell cycle identifies genes differentially regulated in normal and cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 105, 955–960.
- Basso, K., Margolin, A. A., Stolovitzky, G., Klein, U., Dalla-Favera, R., & Califano, A. (2005). Reverse engineering of regulatory networks in human B cells. Nature Genetics, 37, 382–390.
- Belcastro, V., Siciliano, V., Gregoretti, F., Mithbaokar, P., Dharmalingam, G., Berlingieri, S., … Bernardo, D. (2011). Transcriptional gene network inference from a massive dataset elucidates transcriptome organization and gene function. Nucleic Acids Research, 39, 8677–8688.
- Blackinton, J. G., & Keene, J. D. (2014). Post-transcriptional RNA regulons affecting cell cycle and proliferation. Seminars in Cell & Developmental Biology, 34, 44–54.
- Bregman, A., Avraham-Kelbert, M., Barkai, O., Duek, L., Guterman, A., & Choder, M. (2011). Promoter elements regulate cytoplasmic mRNA decay. Cell, 147, 1473–1483.
- Butter, F., Scheibe, M., Mörl, M., & Mann, M. (2009). Unbiased RNA–protein interaction screen by quantitative proteomics. Proceedings of the National Academy of Sciences of the United States of America, 106, 10626–10631.
- Carro, M. S., Lim, W. K., Alvarez, M. J., Bollo, R. J., Zhao, X., Snyder, E. Y., … Iavarone, A. (2010). The transcriptional network for mesenchymal transformation of brain tumours. Nature, 463, 318–325.
- Castello, A., Fischer, B., Eichelbaum, K., Horos, R., Beckmann, B. M., Strein, C., … Hentze, M. W. (2012). Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell, 149, 1393–1406.
- Catarino, R. R., & Stark, A. (2018). Assessing sufficiency and necessity of enhancer activities for gene expression and the mechanisms of transcription activation. Genes & Development, 32, 202–223.
- Chasman, D., Siahpirani, A. F., & Roy, S. (2016). Network-based approaches for analysis of complex biological systems. Current Opinion in Biotechnology, 39, 157–166.
- Cheadle, C., Fan, J., Cho-Chung, Y. S., Werner, T., Ray, J., Do, L., … Becker, K. G. (2005). Control of gene expression during T cell activation: Alternate regulation of mRNA transcription and mRNA stability. BMC Genomics, 6, 75.
- Chechik, G., & Koller, D. (2009). Timing of gene expression responses to environmental changes. Journal of Computational Biology, 16, 279–290.
- Chen, F., Wassie, A. T., Cote, A. J., Sinha, A., Alon, S., Asano, S., … Boyden, E. S. (2016). Nanoscale imaging of RNA with expansion microscopy. Nature Methods, 13, 679–684.
- Chen, K. H., Boettiger, A. N., Moffitt, J. R., Wang, S., & Zhuang, X. (2015). Spatially resolved, highly multiplexed RNA profiling in single cells. Science, 348, aaa6090.
- Chen, T., & van Steensel, B. (2017). Comprehensive analysis of nucleocytoplasmic dynamics of mRNA in Drosophila cells. PLoS Genetics, 13, e1006929.
- Cleary, M. D., Meiering, C. D., Jan, E., Guymon, R., & Boothroyd, J. C. (2005). Biosynthetic labeling of RNA with uracil phosphoribosyltransferase allows cell-specific microarray analysis of mRNA synthesis and decay. Nature Biotechnology, 23, 232–237.
- Conrad, T., Albrecht, A. S., de Melo Costa, V. R., Sauer, S., Meierhofer, D., & Ørom, U. A. (2016). Serial interactome capture of the human cell nucleus. Nature Communications, 7, 11212.
- Core, L. J., Waterfall, J. J., & Lis, J. T. (2008). Nascent RNA sequencing reveals widespread pausing and divergent initiation at human promoters. Science, 322, 1845.
- de Pretis, S., Kress, T., Morelli, M. J., Melloni, G. E. M., Riva, L., Amati, B., & Pelizzola, M. (2015). INSPEcT: A computational tool to infer mRNA synthesis, processing and degradation dynamics from RNA- and 4sU-seq time course experiments. Bioinformatics, 31, 2829–2835.
- De Smet, R., & Marchal, K. (2010). Advantages and limitations of current network inference methods. Nature Reviews. Microbiology, 8, 717–729.
- Dölken, L., Ruzsics, Z., Rädle, B., Friedel, C. C., Zimmer, R., Mages, J., … Koszinowski, U. H. (2008). High-resolution gene expression profiling for simultaneous kinetic parameter analysis of RNA synthesis and decay. RNA, 14, 1959–1972.
- Dominguez, D., Freese, P., Alexis, M. S., Su, A., Hochman, M., Palden, T., … Burge, C. B. (2018). Sequence, structure, and context preferences of human RNA binding proteins. Molecular Cell, 70, 854–867.e9.
- Duffy, E. E., Rutenberg-Schoenberg, M., Stark, C. D., Kitchen, R. R., Gerstein, M. B., & Simon, M. D. (2015). Tracking distinct RNA populations using efficient and reversible covalent chemistry. Molecular Cell, 59, 858–866.
- Elkon, R., Zlotorynski, E., Zeller, K. I., & Agami, R. (2010). Major role for mRNA stability in shaping the kinetics of gene induction. BMC Genomics, 11, 259.
- Enssle, J., Kugler, W., Hentze, M. W., & Kulozik, A. E. (1993). Determination of mRNA fate by different RNA polymerase II promoters. Proceedings of the National Academy of Sciences of the United States of America, 90, 10091–10095.
- Ernst, J., Vainas, O., Harbison, C. T., Simon, I., & Bar-Joseph, Z. (2007). Reconstructing dynamic regulatory maps. Molecular Systems Biology, 3, 74.
- Eser, P., Demel, C., Maier, K. C., Schwalb, B., Pirkl, N., Martin, D. E., … Tresch, A. (2014). Periodic mRNA synthesis and degradation co-operate during cell cycle gene expression. Molecular Systems Biology, 10, 717.
- Fabian, M. R., Sonenberg, N., & Filipowicz, W. (2010). Regulation of mRNA translation and stability by microRNAs. Annual Review of Biochemistry, 79, 351–379.
- Faith, J. J., Hayete, B., Thaden, J. T., Mogno, I., Wierzbowski, J., Cottarel, G., … Gardner, T. S. (2007). Large-scale mapping and validation of Escherichia coli transcriptional regulation from a compendium of expression profiles. PLoS Biology, 5, e8.
- Favre, A., Moreno, G., Blondel, M. O., Kliber, J., Vinzens, F., & Salet, C. (1986). 4-Thiouridine photosensitized RNA–protein crosslinking in mammalian cells. Biochemical and Biophysical Research Communications, 141, 847–854.
- Foley, S. W., Gosai, S. J., Wang, D., Selamoglu, N., Sollitti, A. C., Köster, T., … Gregory, B. D. (2017). A global view of RNA–protein interactions identifies post-transcriptional regulators of root hair cell fate. Developmental Cell, 41, 204–220.e5.
- Friedel, C. C., Dölken, L., Ruzsics, Z., Koszinowski, U. H., & Zimmer, R. (2009). Conserved principles of mammalian transcriptional regulation revealed by RNA half-life. Nucleic Acids Research, 37, e115.
- Friedman, N., Linial, M., Nachman, I., & Pe'er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7, 601–620.
- Friedman, N. (2004). Inferring cellular networks using probabilistic graphical models. Science, 303, 799–805.
- Fulton, D. L., Sundararajan, S., Badis, G., Hughes, T. R., Wasserman, W. W., Roach, J. C., & Sladek, R. (2009). TFCat: The curated catalog of mouse and human transcription factors. Genome Biology, 10, R29.
- García-Martínez, J., Aranda, A., & Pérez-Ortín, J. E. (2004). Genomic run-on evaluates transcription rates for all yeast genes and identifies gene regulatory mechanisms. Molecular Cell, 15, 303–313.
- Gasch, A. P., Spellman, P. T., Kao, C. M., Carmel-Harel, O., Eisen, M. B., Storz, G., … Brown, P. O. (2000). Genomic expression programs in the response of yeast cells to environmental changes. Molecular Biology of the Cell, 11, 4241–4257.
- Gerstberger, S., Hafner, M., & Tuschl, T. (2014). A census of human RNA-binding proteins. Nature Reviews. Genetics, 15, 829–845.
- Goler-Baron, V., Selitrennik, M., Barkai, O., Haimovich, G., Lotan, R., & Choder, M. (2008). Transcription in the nucleus and mRNA decay in the cytoplasm are coupled processes. Genes & Development, 22, 2022–2027.
- Gómez-Schiavon, M., Chen, L.-F., West, A. E., & Buchler, N. E. (2017). BayFish: Bayesian inference of transcription dynamics from population snapshots of single-molecule RNA FISH in single cells. Genome Biology, 18, 164.
- Grigull, J., Mnaimneh, S., Pootoolal, J., Robinson, M. D., & Hughes, T. R. (2004). Genome-wide analysis of mRNA stability using transcription inhibitors and microarrays reveals posttranscriptional control of ribosome biogenesis factors. Molecular and Cellular Biology, 24, 5534–5547.
- Haimovich, G., Choder, M., Singer, R. H., & Trcek, T. (2013). The fate of the messenger is pre-determined: A new model for regulation of gene expression. Biochimica et Biophysica Acta, 1829, 643–653.
- Haimovich, G., Medina, D. A., Causse, S. Z., Garber, M., Millán-Zambrano, G., Barkai, O., … Choder, M. (2013). Gene expression is circular: Factors for mRNA degradation also foster mRNA synthesis. Cell, 153, 1000–1011.
- Hanson, G., & Coller, J. (2017). Codon optimality, bias and usage in translation and mRNA decay. Nature Reviews. Molecular Cell Biology, 19, 20–30.
- Hawkins, P. G., & Morris, K. V. (2010). Transcriptional regulation of Oct4 by a long non-coding RNA antisense to Oct4-pseudogene 5. Transcription, 1, 165–175.
- Haynes, B. C., Maier, E. J., Kramer, M. H., Wang, P. I., Brown, H., & Brent, M. R. (2013). Mapping functional transcription factor networks from gene expression data. Genome Research, 23, 1319–1328.
- He, B., & Tan, K. (2016). Understanding transcriptional regulatory networks using computational models. Current Opinion in Genetics & Development, 37, 101–108.
- He, C., Sidoli, S., Warneford-Thomson, R., Tatomer, D. C., Wilusz, J. E., Garcia, B. A., & Bonasio, R. (2016). High-resolution mapping of RNA-binding regions in the nuclear proteome of embryonic stem cells. Molecular Cell, 64, 416–430.
- Hentze, M. W., Castello, A., Schwarzl, T., & Preiss, T. (2018). A brave new world of RNA-binding proteins. Nature Reviews. Molecular Cell Biology, 19, 327–341.
- Herzog, V. A., Reichholf, B., Neumann, T., Rescheneder, P., Bhat, P., Burkard, T. R., … Ameres, S. L. (2017). Thiol-linked alkylation of RNA to assess expression dynamics. Nature Methods, 14, 1198–1204.
- Hieronymus, H., & Silver, P. A. (2003). Genome-wide analysis of RNA–protein interactions illustrates specificity of the mRNA export machinery. Nature Genetics, 33, 155–161.
- Hillenbrand, P., Maier, K. C., Cramer, P., & Gerland, U. (2016). Inference of gene regulation functions from dynamic transcriptome data. eLife, 5, e12188.
- Hocine, S., Raymond, P., Zenklusen, D., Chao, J. A., & Singer, R. H. (2013). Single-molecule analysis of gene expression using two-color RNA labeling in live yeast. Nature Methods, 10, 119–121.
- Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., & Brown, P. O. (2008). Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biology, 6, e255.
- Horvathova, I., Voigt, F., Kotrys, A. V., Zhan, Y., Artus-Revel, C. G., Eglinger, J., … Chao, J. A. (2017). The dynamics of mRNA turnover revealed by single-molecule imaging in single cells. Molecular Cell, 68, 615–625.e9.
- Hu, B., Yang, Y.-C. T., Huang, Y., Zhu, Y., & Lu, Z. J. (2017). POSTAR: A platform for exploring post-transcriptional regulation coordinated by RNA-binding proteins. Nucleic Acids Research, 45, D104–D114.
- Hu, Z., Killion, P. J., & Iyer, V. R. (2007). Genetic reconstruction of a functional transcriptional regulatory network. Nature Genetics, 39, 683–687.
- Imamachi, N., Salam, K. A., Suzuki, Y., & Akimitsu, N. (2017). A GC-rich sequence feature in the 3′ UTR directs UPF1-dependent mRNA decay in mammalian cells. Genome Research, 27, 407–418.
- Ingram, P. J., Stumpf, M. P. H., & Stark, J. (2006). Network motifs: Structure does not determine function. BMC Genomics, 7, 1–12.
- Iyer, S., Park, B. R., & Kim, M. (2016). Absolute quantitative measurement of transcriptional kinetic parameters in vivo. Nucleic Acids Research, 44, e142–e142.
- Jao, C. Y., & Salic, A. (2008). Exploring RNA transcription and turnover in vivo by using click chemistry. Proceedings of the National Academy of Sciences, 105, 15779–15784.
- Johnson, D. S., Mortazavi, A., Myers, R. M., & Wold, B. (2007). Genome-wide mapping of in vivo protein–DNA interactions. Science, 316, 1497–1502.
- Karlebach, G., & Shamir, R. (2012). Constructing logical models of gene regulatory networks by integrating transcription factor–DNA interactions with expression data: an entropy-based approach. Journal of Computational Biology, 19, 30–41.
- Keene, J. D. (2007). RNA regulons: Coordination of post-transcriptional events. Nature Reviews. Genetics, 8, 533–543.
- Keene, J. D., & Tenenbaum, S. A. (2002). Eukaryotic mRNPs may represent posttranscriptional operons. Molecular Cell, 9, 1161–1167.
- Kemmeren, P., Sameith, K., van de Pasch, L. A. L., Benschop, J. J., Lenstra, T. L., Margaritis, T., … Holstege, F. C. P. (2014). Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell, 157, 740–752.
- Kenzelmann, M., Maertens, S., Hergenhahn, M., Kueffer, S., Hotz-Wagenblatt, A., Li, L., … Schütz, G. (2007). Microarray analysis of newly synthesized RNA in cells and animals. Proceedings of the National Academy of Sciences of the United States of America, 104, 6164–6169.
- Kim, J., Chu, J., Shen, X., Wang, J., & Orkin, S. H. (2008). An extended transcriptional network for pluripotency of embryonic stem cells. Cell, 132, 1049–1061.
- Kouzarides, T. (2007). Chromatin modifications and their function. Cell, 128, 693–705.
- Lambert, S. A., Jolma, A., Campitelli, L. F., Das, P. K., Yin, Y., Albu, M., … Weirauch, M. T. (2018). The human transcription factors. Cell, 172, 650–665.
- Landt, S. G., Marinov, G. K., Kundaje, A., Kheradpour, P., Pauli, F., Batzoglou, S., … Snyder, M. (2012). ChIP-seq guidelines and practices of the ENCODE and modENCODE consortia. Genome Research, 22, 1813–1831.
- Lee, J. H., Daugharthy, E. R., Scheiman, J., Kalhor, R., Yang, J. L., Ferrante, T. C., … Church, G. M. (2014). Highly multiplexed subcellular RNA sequencing in situ. Science, 343, 1360–1363.
- Lee, T. I., Rinaldi, N. J., Robert, F., Odom, D. T., Bar-Joseph, Z., Gerber, G. K., … Young, R. A. (2002). Transcriptional regulatory networks in Saccharomyces cerevisiae. Science, 298, 799–804.
- Levinthal, C., Keynan, A., & Higa, A. (1962). Messenger RNA turnover and protein synthesis in B. subtilis inhibited by actinomycin D. Proceedings of the National Academy of Sciences of the United States of America, 48, 1631–1638.
- Lim, W. A., Lee, C. M., & Tang, C. (2013). Design principles of regulatory networks: Searching for the molecular algorithms of the cell. Molecular Cell, 49, 202–212.
- Liu, G., Mercer, T. R., Shearwood, A. M., Siira, S. J., Hibbs, M. E., Mattick, J. S., … Filipovska, A. (2013). Mapping of mitochondrial RNA–protein interactions by digital RNase footprinting. Cell Reports, 5, 839–848.
- López-Maury, L., Marguerat, S., & Bähler, J. (2008). Tuning gene expression to changing environments: From rapid responses to evolutionary adaptation. Nature Reviews. Genetics, 9, 583–593.
- Lotan, R., Goler-Baron, V., Duek, L., Haimovich, G., & Choder, M. (2007). The Rpb7p subunit of yeast RNA polymerase II plays roles in the two major cytoplasmic mRNA decay mechanisms. Journal of Cell Biology, 178, 1133–1143.
- Lugowski, A., Nicholson, B., & Rissland, O. S. (2018). DRUID: A pipeline for transcriptome-wide measurements of mRNA stability. RNA, 24, 623–632.
- Luscombe, N. M., Madan Babu, M., Yu, H., Snyder, M., Teichmann, S. A., & Gerstein, M. (2004). Genomic analysis of regulatory network dynamics reveals large topological changes. Nature, 431, 308–312.
- Maekawa, S., Imamachi, N., Irie, T., Tani, H., Matsumoto, K., Mizutani, R., … Akimitsu, N. (2015). Analysis of RNA decay factor mediated RNA stability contributions on RNA abundance. BMC Genomics, 16, 154.
- Marbach, D., Costello, J. C., Küffner, R., Vega, N., Prill, R. J., Camacho, D. M., … Stolovitzky, G. (2012). Wisdom of crowds for robust gene network inference. Nature Methods, 9, 796–804.
- Matys, V., Kel-Margoulis, O. V., Fricke, E., Liebich, I., Land, S., Barre-Dirrie, A., … Wingender, E. (2006). TRANSFAC® and its module TRANSCompel®: Transcriptional gene regulation in eukaryotes. Nucleic Acids Research, 34, D108–D110.
- Medina, D. A., Jordán-Pla, A., Millán-Zambrano, G., Chávez, S., Choder, M., & Pérez-Ortín, J. E. (2014). Cytoplasmic 5′-3′ exonuclease Xrn1p is also a genome-wide transcription factor in yeast. Frontiers in Genetics, 5, 1.
- Michel, M., Demel, C., Zacher, B., Schwalb, B., Krebs, S., Blum, H., … Cramer, P. (2017). TT-seq captures enhancer landscapes immediately after T-cell stimulation. Molecular Systems Biology, 13, 920.
- Miller, C., Schwalb, B., Maier, K., Schulz, D., Dumcke, S., Zacher, B., … Cramer, P. (2014). Dynamic transcriptome analysis measures rates of mRNA synthesis and decay in yeast. Molecular Systems Biology, 7, 458–458.
- Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., & Alon, U. (2002). Network motifs: Simple building blocks of complex networks. Science, 298, 824–827.
- modENCODE Consortium, Roy, S., Ernst, J., Kharchenko, P. V., Kheradpour, P., Negre, N., … Kellis, M. (2010). Identification of functional elements and regulatory circuits by Drosophila modENCODE. Science, 330, 1787–1797.
- Muhar, M., Ebert, A., Neumann, T., Umkehrer, C., Jude, J., Wieshofer, C., … Zuber, J. (2018). SLAM-seq defines direct gene-regulatory functions of the BRD4-MYC axis. Science, 360, 800–805. https://doi.org/10.1126/science.aao2793
- Nishimura, K., Fukagawa, T., Takisawa, H., Kakimoto, T., & Kanemaki, M. (2009). An auxin-based degron system for the rapid depletion of proteins in nonplant cells. Nature Methods, 6, 917–922.
- Nissan, T., Rajyaguru, P., She, M., Song, H., & Parker, R. (2010). Decapping activators in Saccharomyces cerevisiae act by multiple mechanisms. Molecular Cell, 39, 773–783.
- Oki, S., Ohta, T., Shioi, G., Hatanaka, H., Ogasawara, O., Okuda, Y., Kawaji, H., Nakaki, R., Sese, J., Meno, C. (2018). Integrative analysis of transcription factor occupancy at enhancers and disease risk loci in noncoding genomic regions. bioRxiv 262899. doi:https://doi.org/10.1101/262899
- Palumbo, M. C., Farina, L., & Paci, P. (2015). Kinetics effects and modeling of mRNA turnover. WIREs RNA, 6, 327–336.
- Rabani, M., Levin, J. Z., Fan, L., Adiconis, X., Raychowdhury, R., Garber, M., … Regev, A. (2011). Metabolic labeling of RNA uncovers principles of RNA production and degradation dynamics in mammalian cells. Nature Biotechnology, 29, 436–442.
- Rabani, M., Raychowdhury, R., Jovanovic, M., Rooney, M., Stumpo, D. J., Pauli, A., … Regev, A. (2014). High-resolution sequencing and modeling identifies distinct dynamic RNA regulatory strategies. Cell, 159, 1698–1710.
- Raghavan, A., Ogilvie, R. L., Reilly, C., Abelson, M. L., Raghavan, S., Vasdewani, J., … Bohjanen, P. R. (2002). Genome-wide analysis of mRNA decay in resting and activated primary human T lymphocytes. Nucleic Acids Research, 30, 5529–5538.
- Raj, A., van den Bogaard, P., Rifkin, S. A., van Oudenaarden, A., & Tyagi, S. (2008). Imaging individual mRNA molecules using multiple singly labeled probes. Nature Methods, 5, 877–879.
- Ravasi, T., Suzuki, H., Cannistraci, C. V., Katayama, S., Bajic, V. B., Tan, K., … Hayashizaki, Y. (2010). An atlas of combinatorial transcriptional regulation in mouse and man. Cell, 140, 744–752.
- Ray, D., Ha KCH, Nie K, Zheng H, Hughes TR, Morris QD RNAcompete methodology and application to determine sequence preferences of unconventional RNA-binding proteins. Methods 118–119, 3–15 (2017).
- Riley, K. J.-L., & Maher, L. J., III. (2007). p53–RNA interactions: New clues in an old mystery. RNA, 13, 1825–1833.
- Riml, C., Amort, T., Rieder, D., Gasser, C., Lusser, A., & Micura, R. (2017). Osmium-mediated transformation of 4-thiouridine to cytidine as key to study RNA dynamics by sequencing. Angewandte Chemie, 56, 13479–13483.
- Romero-Santacreu, L., Moreno, J., Perez-Ortin, J. E., & Alepuz, P. (2009). Specific and global regulation of mRNA stability during osmotic stress in Saccharomyces cerevisiae. RNA, 15, 1110–1120.
- Russo, J., Heck, A. M., Wilusz, J., & Wilusz, C. J. (2017). Metabolic labeling and recovery of nascent RNA to accurately quantify mRNA stability. Methods, 120, 39–48.
- Saint-André, V., Federation, A. J., Lin, C. Y., Abraham, B. J., Reddy, J., Lee, T. I., … Young, R. A. (2016). Models of human core transcriptional regulatory circuitries. Genome Research, 26, 385–396.
- Sánchez, Y., Segura, V., Marín-Béjar, O., Athie, A., Marchese, F. P., González, J., … Huarte, M. (2014). Genome-wide analysis of the human p53 transcriptional network unveils a lncRNA tumour suppressor signature. Nature Communications, 5, 5812.
- Sanda, T., Lawton, L. N., Barrasa, M. I., Fan, Z. P., Kohlhammer, H., Gutierrez, A., … Look, A. T. (2012). Core transcriptional regulatory circuit controlled by the TAL1 complex in human T cell acute lymphoblastic leukemia. Cancer Cell, 22, 209–221.
- Schofield, J. A., Duffy, E. E., Kiefer, L., Sullivan, M. C., & Simon, M. D. (2018). TimeLapse-seq: Adding a temporal dimension to RNA sequencing through nucleoside recoding. Nature Methods, 15, 221–225.
- Schwalb, B., Michel, M., Zacher, B., Frühauf, K., Demel, C., Tresch, A., … Cramer, P. (2016). TT-seq maps the human transient transcriptome. Science, 352, 1225–1228.
- Segal, E., Shapira, M., Regev, A., Pe'er, D., Botstein, D., Koller, D., & Friedman, N. (2003). Module networks: Identifying regulatory modules and their condition-specific regulators from gene expression data. Nature Genetics, 34, 166–176.
- Shalem, O., Dahan, O., Levo, M., Martinez, M. R., Furman, I., Segal, E., & Pilpel, Y. (2008). Transient transcriptional responses to stress are generated by opposing effects of mRNA production and degradation. Molecular Systems Biology, 4, 223.
- Shen-Orr, S. S., Milo, R., Mangan, S., & Alon, U. (2002). Network motifs in the transcriptional regulation network of Escherichia coli. Nature Genetics, 31, 64–68.
- Shlyueva, D., Stampfel, G., & Stark, A. (2014). Transcriptional enhancers: From properties to genome-wide predictions. Nature Reviews. Genetics, 15, 272–286.
- Sigova, A. A., Abraham, B. J., Ji, X., Molinie, B., Hannett, N. M., Guo, Y. E., … Young, R. A. (2015). Transcription factor trapping by RNA in gene regulatory elements. Science, 350, 978–981.
- Spitz, F., & Furlong, E. E. M. (2012). Transcription factors: From enhancer binding to developmental control. Nature Reviews. Genetics, 13, 613–626.
- Storch, K.-F., Lipan, O., Leykin, I., Viswanathan, N., Davis, F. C., Wong, W. H., & Weitz, C. J. (2002). Extensive and divergent circadian gene expression in liver and heart. Nature, 417, 78–83.
- Sun, M., Schwalb, B., Pirkl, N., Maier, K. C., Schenk, A., Failmezger, H., … Cramer, P. (2013). Global analysis of eukaryotic mRNA degradation reveals Xrn1-dependent buffering of transcript levels. Molecular Cell, 52, 52–62.
- Sun, M., Schwalb, B., Schulz, D., Pirkl, N., Etzold, S., Larivière, L., … Cramer, P. (2012). Comparative dynamic transcriptome analysis (cDTA) reveals mutual feedback between mRNA synthesis and degradation. Genome Research, 22, 1350–1359.
- Tanay, A., Sharan, R., Kupiec, M., & Shamir, R. (2004). Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. Proceedings of the National Academy of Sciences of the United States of America, 101, 2981–2986.
- Tani, H., Mizutani, R., Salam, K. A., Tano, K., Ijiri, K., Wakamatsu, A., … Akimitsu, N. (2012). Genome-wide determination of RNA stability reveals hundreds of short-lived noncoding transcripts in mammals. Genome Research, 22, 947–956.
- Trcek, T., Larson, D. R., Moldón, A., Query, C. C., & Singer, R. H. (2011). Single-molecule mRNA decay measurements reveal promoter-regulated mRNA stability in yeast. Cell, 147, 1484–1497.
- Tutucci, E., Vera, M., Biswas, J., Garcia, J., Parker, R., & Singer, R. H. (2018). An improved MS2 system for accurate reporting of the mRNA life cycle. Nature Methods, 15, 81–89.
- Wang, Y., Liu, C. L., Storey, J. D., Tibshirani, R. J., Herschlag, D., & Brown, P. O. (2002). Precision and functional specificity in mRNA decay. Proceedings of the National Academy of Sciences of the United States of America, 99, 5860–5865.
- Wei, B., Jolma, A., Sahu, B., Orre, L. M., Zhong, F., Zhu, F., … Taipale, J. (2018). A protein activity assay to measure global transcription factor activity reveals determinants of chromatin accessibility. Nature Biotechnology, 36, 521–529.
- Weirauch, M. T., Yang, A., Albu, M., Cote, A. G., Montenegro-Montero, A., Drewe, P., … Hughes, T. R. (2014). Determination and inference of eukaryotic transcription factor sequence specificity. Cell, 158, 1431–1443.
- Wheeler, E. C., Van Nostrand, E. L., & Yeo, G. W. (2018). Advances and challenges in the detection of transcriptome-wide protein–RNA interactions. WIREs RNA, 9, e1436.
- Wingender, E., Schoeps, T., Haubrock, M., Krull, M., & Dönitz, J. (2018). TFClass: Expanding the classification of human transcription factors to their mammalian orthologs. Nucleic Acids Research, 46, D343–D347.
- Xue, J., Schmidt, S. V., Sander, J., Draffehn, A., Krebs, W., Quester, I., … Schultze, J. L. (2014). Transcriptome-based network analysis reveals a spectrum model of human macrophage activation. Immunity, 40, 274–288.
- Yamada, T., Imamachi, N., Onoguchi-Mizutani, R., Imamura, K., Suzuki, Y., & Akimitsu, N. (2018). 5′-Bromouridine IP Chase (BRIC)-Seq to Determine RNA Half-Lives. Methods in Molecular Biology, 1720, 1–13.
- Yang, E., van Nimwegen, E., Zavolan, M., Rajewsky, N., Schroeder, M., Magnasco, M., & Darnell, J. E., Jr. (2003). Decay rates of human mRNAs: Correlation with functional characteristics and sequence attributes. Genome Research, 13, 1863.
- Yang, Y.-C., Di, C., Hu, B., Zhou, M., Liu, Y., Song, N., … Lu, Z. J. (2015). CLIPdb: A CLIP-seq database for protein–RNA interactions. BMC Genomics, 16, 51.
- Yevshin, I., Sharipov, R., Valeev, T., Kel, A., & Kolpakov, F. (2017). GTRD: A database of transcription factor binding sites identified by ChIP-seq experiments. Nucleic Acids Research, 45, D61–D67.
- Yosef, N., & Regev, A. (2011). Impulse control: Temporal dynamics in gene transcription. Cell, 144, 886–896.
- Zaslaver, A., Mayo, A. E., Rosenberg, R., Bashkin, P., Sberro, H., Tsalyuk, M., … Alon, U. (2004). Just-in-time transcription program in metabolic pathways. Nature Genetics, 36, 486–491.
- Zhang, X., & Liu, S. (2017). RBPPred: Predicting RNA-binding proteins from sequence using SVM. Bioinformatics, 33, 854–862.
- Zhou, Q., Liu, M., Xia, X., Gong, T., Feng, J., Liu, W., … Qin, J. (2017). A mouse tissue transcription factor atlas. Nature Communications, 8, 15089.