Mitochondrial tRNA mutations and disease
John W. Yarham
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorJoanna L. Elson
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorEmma L. Blakely
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorRobert McFarland
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorCorresponding Author
Robert W. Taylor
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UKSearch for more papers by this authorJohn W. Yarham
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorJoanna L. Elson
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorEmma L. Blakely
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorRobert McFarland
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Search for more papers by this authorCorresponding Author
Robert W. Taylor
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
Mitochondrial Research Group, Institute for Ageing and Health, The Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UKSearch for more papers by this authorAbstract
Mitochondrial (mt-) tRNA (MTT) gene mutations are an important cause of human morbidity and are associated with a wide range of pathology, from isolated organ-specific diseases such as myopathy or hearing loss, through to multisystem disorders with encephalopathy, gastrointestinal dysmotility, and life-threatening cardiomyopathy. Our understanding of how MTT mutations cause disease remains poor and progress has been hampered by the complex interaction of genotype with phenotype that can result in patients who harbor the same mutation exhibiting starkly contrasting phenotypes, whereas other (genetically heterogeneous) patients manifest clinically identical syndromes. A further complexity is the highly polymorphic nature of mitochondrial DNA (mtDNA), which must temper any reflex assumptions of pathogenicity for novel MTT substitutions. Nevertheless significant progress is being made and we shall review the methods employed to identify and characterize MTT mutations as pathogenic. Also important is our understanding of the molecular processes involved and we shall discuss the data available on two of the most studied MTT mutations (m.8344A > G and m.3243A > G) as well as other potential pathogenic mechanisms. Knowledge of factors influencing the inheritance of MTT mutations, and therefore the likelihood of disease transmission, is of particular importance to female patients. At present, the factors determining transmission remain elusive, but we shall examine several possible mechanisms and discuss the evidence for each. Finally, a number of different yeast and mouse models are currently used to investigate mitochondrial disease and we will assess the importance of and difficulties associated with each model as well as the future of possible therapies for patients with mitochondrial disease. Copyright © 2010 John Wiley & Sons, Inc.
This article is categorized under:
- RNA in Disease and Development > RNA in Disease
FURTHER READING
- The MitoMAP database, an online compendium of human mitochondrial DNA variation, can be accessed at http://www.mitomap.org/MITOMAP The Mamit-tRNA database (http://mamit-trna.u-strasbg.fr/) provides information on mammalian tRNA sequences and 2-D structures as well as details of human mt-tRNA mutations linked with disease.
REFERENCES
- 1Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet 2005, 6: 389–402.
- 2Zeviani M, Di Donato S. Mitochondrial disorders. Brain 2004, 127: 2153–2172.
- 3Cree LM, Samuels DC, Lopes S, Rajasimha HK, Wonnapinij P, Mann JR, Dahl HHM, Chinnery PF. A reduction of mitochondrial DNA molecules during embryogenesis explains the rapid segregation of genotypes. Nat Genet 2008, 40: 249–254.
- 4Stewart JB, Freyer C, Elson JL, Larsson NG. Purifying selection of mtDNA and its implications for understanding evolution and mitochondrial disease. Nat Rev Genet 2008, 9: 657–662.
- 5Wai T, Teoli D, Shoubridge EA. The mitochondrial DNA genetic bottleneck results from replication of a subpopulation of genomes. Nat Genet 2008, 40: 1484–1488.
- 6Cao LQ, Shitara H, Horii T, Nagao Y, Imai H, Abe K, Hara T, Hayashi JI, Yonekawa H. The mitochondrial bottleneck occurs without reduction of mtDNA content in female mouse germ cells. Nat Genet 2007, 39: 386–390.
- 7Anderson S, Bankier AT, Barrell BG, Debruijn MHL, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, Sanger F, et al. Sequence and organisation of the human mitochondrial genome. Nature 1981, 290: 457–465.
- 8Taanman JW. The mitochondrial genome: structure, transcription, translation and replication. Biochim Biophys Acta 1999, 1410: 103–123.
- 9Larsson NG, Clayton DA. Molecular genetic aspects of human mitochondrial disorders. Ann Rev Genet 1995, 29: 151–178.
- 10Robin ED, Wong R. Mitochondrial DNA molecules and virtual number of mitochondria per cell in mammalian cells. J Cell Physiol 1988, 136: 507–513.
- 11Ojala D, Montoya J, Attardi G. Transfer-RNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290: 470–474.
- 12Florentz C, Sohm B, Tryoen-Toth P, Putz J, Sissler M. Human mitochondrial tRNAs in health and disease. Cell Mol Life Sci 2003, 60: 1356–1375.
- 13Pesole G, Gissi C, De Chirico A, Saccone C. Nucleotide substitution rate of mammalian mitochondrial genomes. J Mol Evol 1999, 48: 427–434.
- 14Kunkel TA, Loeb LA. Fidelity of mammalian DNA-polymerases. Science 1981, 213: 765–767.
- 15Mandavilli BS, Santos JH, Van Houten B. Mitochondrial DNA repair and aging. Mut Res 2002, 509: 127–151.
- 16Durham SE, Samuels DC, Chinnery PF. Is selection required for the accumulation of somatic mitochondrial DNA mutations in post-mitotic cells? Neuromus Disord 2006, 16: 381–386.
- 17Sacconi S, Salviati L, Nishigaki Y, Walker WF, Hernandez-Rosa E, Trevisson E, Delplace S, Desnuelle C, Shanske S, Hirano M, et al. A functionally dominant mitochondrial DNA mutation. Hum Mol Genet 2008, 17: 1814–1820.
- 18Elson JL, Swalwell H, Blakely EL, McFarland R, Taylor RW, Turnbull DM. Pathogenic mitochondrial tRNA mutations—which mutations are inherited and why? Hum Mutat 2009, 30: E984–E992.
- 19Lightowlers RN, Chinnery PF, Turnbull DM, Howell N. Mammalian mitochondrial genetics: heredity, heteroplasmy and disease. Trends Genet 1997, 13: 450–455.
- 20He YP, Wu J, Dressman DC, Iacobuzio-Donahue C, Markowitz SD, Velculescu VE, Diaz LA, Kinzler KW, Vogelstein B, Papadopoulos N. Heteroplasmic mitochondrial DNA mutations in normal and tumour cells. Nature 2010, 464: 610–614.
- 21McFarland R, Elson JL, Taylor RW, Howell N, Turnbull DM. Assigning pathogenicity to mitochondrial tRNA mutations: when ‘definitely maybe’ is not good enough. Trends Genet 2004, 20: 591–596.
- 22Stewart JB, Freyer C, Elson JL, Wredenberg A, Cansu Z, Trifunovic A, Larsson NG. Strong purifying selection in transmission of mammalian mitochondrial DNA. PLoS Biol 2008, 6: 63–71.
- 23Kogelnik AM, Lott MT, Brown MD, Navathe SB, Wallace DC. MITOMAP: an update on the status of the human mitochondrial genome database. Nucleic Acids Res 1997, 25: 196–199.
- 24Martin NC. Organellar tRNAs: biosynthesis and function. In: D Soll, UL RajBhandary, eds. tRNA: Structure, Biosynthesis and Function. Washington, DC: ASM Press; 1995, 127–140.
10.1128/9781555818333.ch9 Google Scholar
- 25Helm M, Brule H, Friede D, Giege R, Putz D, Florentz C. Search for characteristic structural features of mammalian mitochondrial tRNAs. RNA 2000, 6: 1356–1379.
- 26Takeuchi N, Kawakami M, Omori A, Ueda T, Spremulli LL, Watanabe K. Mammalian mitochondrial methionyl-tRNA transformylase from bovine liver—purification, characterization, and gene structure. J Biol Chem 1998, 273: 15085–15090.
- 27Takeuchi N, Vial L, Panvert M, Schmitt E, Watanabe K, Mechulam Y, Blanquet S. Recognition of tRNAs by methionyl-tRNA transformylase from mammalian mitochondria. J Biol Chem 2001, 276: 20064–20068.
- 28Spencer AC, Spremulli LL. Interaction of mitochondrial initiation factor 2 with mitochondrial fMet-tRNA. Nucleic Acids Res 2004, 32: 5464–5470.
- 29Nissen P, Thirup S, Kjeldgaard M, Nyborg J. The crystal structure of Cys-tRNACys-EF-Tu-GDPNP reveals general and specific features in the ternary complex and in tRNA. Structure 1999, 7: 143–156.
- 30Ohtsuki T, Sato A, Watanabe Y, Watanabe K. A unique serine-specific elongation factor Tu found in nematode mitochondria. Nat Struct Biol 2002, 9: 669–673.
- 31Helm M, Brule H, Degoul F, Cepanec C, Leroux JP, Giege R, Florentz C. The presence of modified nucleotides is required for cloverleaf folding of a human mitochondrial tRNA. Nucleic Acids Res 1998, 26: 1636–1643.
- 32Frank DN, Pace NR. Ribonuclease P: unity and diversity in a tRNA processing ribozyme. Ann Rev Biochem 1998, 67: 153–180.
- 33Manam S, Vantuyle GC. Separation and characterisation of 5′-transfer and 3′-transfer RNA processing nucleases from rat-liver mitochondria. J Biol Chem 1987, 262: 10272–10279.
- 34Mukerji SK, Deutscher MD. Reactions at 3′ terminus of transfer ribonucleic-acid: V. Subcellular localisation and evidence for a mitochondrial transfer ribonucleic acid nucleotidyltransferase. J Biol Chem 1972, 247: 481–488.
- 35Meinnel T, Mechulam Y, Blanquet S. Aminoacyl-tRNA synthetases: occurence, structure and function. In: D Soll, UL RajBhandary, eds. tRNA: Structure, Biosynthesis and Function. Washington, DC: ASM Press; 1995, 251–292.
10.1128/9781555818333.ch14 Google Scholar
- 36Sissler M, Putz J, Fasiolo F, Florentz C. Mitochondrial aminoacyl-tRNA synthetases. In: M Ibba, C Francklyn, S Cusack, eds. The Aminoacyl-tRNA Synthetases. Georgetown, TX: Landes Biosciences; 2005.
- 37Sasarman F, Antonicka H, Shoubridge EA. The A3243G tRNALeu(UUR) MELAS mutation causes amino acid misincorporation and a combined respiratory chain assembly defect partially suppressed by overexpression of EFTu and EFG2. Hum Mol Genet 2008, 17: 3697–3707.
- 38Boniecki MT, Vu MT, Betha AK, Martinis SA. CP1-dependent partitioning of pretransfer and posttransfer editing in leucyl-tRNA synthetase. Proc Natl Acad Sci USA 2008, 105: 19223–19228.
- 39Karkhanis VA, Boniecki MT, Poruri K, Martinis SA. A viable amino acid editing activity in the leucyl-tRNA synthetase CP1-splicing domain is not required in the yeast mitochondria. J Biol Chem 2006, 281: 33217–33225.
- 40Lue SW, Kelley SO. An aminoacyl-tRNA synthetase with a defunct editing site. Biochemistry 2005, 44: 3010–3016.
- 41Roy H, Ling JQ, Alfonzo J, Ibba M. Loss of editing activity during the evolution of mitochondrial phenylalanyl-tRNA synthetase. J Biol Chem 2005, 280: 38186–38192.
- 42Yamane T, Hopfield JJ. Experimental evidence for kinetic proofreading in aminoacylation of transfer-RNA by synthetase. Proc Natl Acad Sci USA 1977, 74: 2246–2250.
- 43Giege R, Sissler M, Florentz C. Universal rules and idiosyncratic features in tRNA identity. Nucleic Acids Res 1998, 26: 5017–5035.
- 44Barrell BG, Anderson S, Bankier AT, Debruijn MHL, Chen E, Coulson AR, Drouin J, Eperon IC, Nierlich DP, Roe BA, et al. Different pattern of codon recognition by mammalian mitochondrial transfer-RNAs. Proc Natl Acad Sci USA 1980, 77: 3164–3166.
- 45Barrell BG, Bankier AT, Drouin J. Different genetic-code in human mitochondria. Nature 1979, 282: 189–194.
- 46Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, et al. Initial sequencing and analysis of the human genome. Nature 2001, 409: 860–921.
- 47Crick FH. Codon–anticodon pairing: the wobble hypothesis. J Mol Biol 1966, 19: 548–555.
- 48Yasukawa T, Suzuki T, Ishii N, Ueda T, Ohta S, Watanabe K. Defect in modification at the anticodon wobble nucleotide of mitochondrial tRNALys with the MERRF encephalomyopathy pathogenic mutation. FEBS Lett 2000, 467: 175–178.
- 49Yasukawa T, Suzuki T, Ueda T, Ohta S, Watanabe K. Modification defect at anticodon wobble nucleotide of mitochondrial tRNAsLeu(UUR) with pathogenic mutations of mitochondrial myopathy, encephalopathy, lactic acidosis, and stroke-like episodes. J Biol Chem 2000, 275: 4251–4257.
- 50Manwaring N, Jones MM, Wang JJ, Rochtchina E, Howard C, Mitchell P, Sue CM. Population prevalence of the MELAS A3243G mutation. Mitochondrion 2007, 7: 230–233.
- 51Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, Karppa M, Majamaa-Voltti KAM, Rusanen H, Sorri M, Peuhkurinen KJ, et al. Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 1998, 63: 447–454.
- 52Schaefer AM, McFarland R, Blakely EL, He L, Whittaker RG, Taylor RW, Chinnery PF, Turnbull DM. Prevalence of mitochondrial DNA disease in adults. Ann Neurol 2008, 63: 35–39.
- 53Dimauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet 2001, 106: 18–26.
- 54Deschauer M, Swalwell H, Strauss M, Zierz S, Taylor RW. Novel mitochondrial transfer RNAPhe gene mutation associated with late-onset neuromuscular disease. Arch Neurol 2006, 63: 902–905.
- 55Mimaki M, Hatakeyama H, Ichiyama T, Isumi H, Furukawa S, Akasaka M, Kamei A, Komaki H, Nishino I, Nonaka I, et al. Different effects of novel mtDNA G3242A and G3244A base changes adjacent to a common A3243G mutation in patients with mitochondrial disorders. Mitochondrion 2009, 9: 115–122.
- 56Bortot B, Barbi E, Biffi S, Angelini C, Faleschini E, Severini GM, Carrozzi M. Two novel cosegregating mutations in tRNAMet and COX III, in a patient with exercise intolerance and autoimmune polyendocrinopathy. Mitochondrion 2009, 9: 123–129.
- 57Sanaker PS, Nakkestad HL, Downham E, Bindoff LA. A novel mutation in the mitochondrial tRNA for tryptophan causing a late-onset mitochondrial encephalomyopathy. Acta Neurol Scand 2010, 121: 109–113.
- 58Swalwell H, Deschauer M, Hartl H, Strauss M, Turnbull DM, Zierz S, Taylor RW. Pure myopathy associated with a novel mitochondrial tRNA gene mutation. Neurology 2006, 66: 447–449.
- 59Meulemans A, De Paepe B, De Bleecker J, Smet J, Lissens W, Van Coster R, De Meirleir L, Seneca S. Two novel mitochondrial DNA mutations in muscle tissue of a patient with limb-girdle myopathy. Arch Neurol 2007, 64: 1339–1343.
- 60Smits P, Mattijssen S, Morava E, van den Brand M, van den Brandt F, Wijburg F, Pruijn G, Smeitink J, Nijtmans L, Rodenburg R, et al. Functional consequences of mitochondrial tRNATrp and tRNAArg mutations causing combined OXPHOS defects. Euro J Hum Genet 2010, 18: 324–329.
- 61Kornblum C, Zsurka G, Wiesner RJ, Schroder R, Kunz WS. Concerted action of two novel tRNA mtDNA point mutations in chronic progressive external ophthalmoplegia. Biosci Rep 2008, 28: 89–96.
- 62Gambello MJ, Bai RK, Chen TJ, Dimachkie M, Wong LJC. Exercise intolerance associated with a novel 8300T > C mutation in mitochondrial transfer RNALys. Muscle Nerve 2006, 34: 437–443.
- 63Blakely EL, Swalwell H, Petty RKH, McFarland R, Turnbull DM, Taylor RW. Sporadic myopathy and exercise intolerance associated with the mitochondrial 8328G > A tRNALys mutation. J Neurol 2007, 254: 1283–1285.
- 64Pereira C, Nogueira C, Barbot C, Tessa A, Soares C, Fattori F, Guimaraes A, Santorelli FM, Vilarinho L. Identification of a new mtDNA mutation (14724G > A) associated with mitochondrial leukoencephalopathy. Biochem Biophys Res Commun 2007, 354: 937–941.
- 65Blakely EL, Trip SA, Swalwell H, He LP, Wren DR, Rich P, Turnbull DM, Omer SE, Taylor RW. A new mitochondrial transfer RNAPro gene mutation associated with myoclonic epilepsy with ragged-red fibers and other neurological features. Arch Neurol 2009, 66: 399–402.
- 66King MP, Attardi G. Human cells lacking mtDNA—repopulation with exogenous mitochondria by complementation. Science 1989, 246: 500–503.
- 67Pakendorf B, Stoneking M. Mitochondrial DNA and human evolution. Ann Rev Genomics Hum Genet 2005, 6: 165–183.
- 68Neiman M, Taylor DR. The causes of mutation accumulation in mitochondrial genomes. Proc R Soc B-Biol Sci 2009, 276: 1201–1209.
- 69D'Aurelio M, Gajewski CD, Lin MT, Mauck WM, Shao LZ, Lenaz G, Moraes CT, Manfredi G. Heterologous mitochondrial DNA recombination in human cells. Hum Mol Genet 2004, 13: 3171–3179.
- 70Zsurka G, Hampel KG, Kudina T, Kornblum C, Kraytsberg Y, Elger CE, Khrapko K, Kunz WS. Inheritance of mitochondrial DNA recombinants in double-heteroplasmic families: potential implications for phylogenetic analysis. Am J Hum Genet 2007, 80: 298–305.
- 71Cann RL, Wilson AC. Models of Human Evolution. Science 1982, 217: 303–304.
- 72Ingman M, Kaessmann H, Paabo S, Gyllensten U. Mitochondrial genome variation and the origin of modern humans. Nature 2000, 408: 708–713.
- 73Elliott HR, Samuels DC, Eden JA, Relton CL, Chinnery PF. Pathogenic mitochondrial DNA mutations are common in the general population. Am J Hum Genet 2008, 83: 254–260.
- 74Muller HJ. The relation of recombination to mutational advance. Mutat Res 1964, 106: 2–9.
- 75Hauswirth WW, Laipis PJ. Mitochondrial DNA polymorphism in a maternal lineage of Holstein Cows. Proc Natl Acad Sci USA 1982, 79: 4686–4690.
- 76Jenuth JP, Peterson AC, Fu K, Shoubridge EA. Random genetic drift in the female germline explains the rapid segregation of mammalian mitochondrial DNA. Nat Genet 1996, 14: 146–151.
- 77Cao L, Shitara H, Sugimoto M, Hayashi J-I, Abe K, Yonekawa H. New evidence confirms that the mitochondrial bottleneck is generated without reduction of mitochondrial DNA content in early primordial germ cells of mice. PLoS Genet 2009, 5: e1000756.
- 78Fan WW, Waymire KG, Narula N, Li P, Rocher C, Coskun PE, Vannan MA, Narula J, MacGregor GR, Wallace, DC. A mouse model of mitochondrial disease reveals germline selection against severe mtDNA mutations. Science 2008, 319: 958–962.
- 79Shoubridge EA, Wai T. Medicine—sidestepping mutational meltdown. Science 2008, 319: 914–915.
- 80Elson JL, Turnbull DM, Howell N. Comparative genomics and the evolution of human mitochondrial DNA: assessing the effects of selection. Am J Hum Genet 2004, 74: 229–238.
- 81Kivisild T, Shen PD, Wall DP, Do B, Sung R, Davis K, Passarino G, Underhill PA, Scharfe C, Torroni A, et al. The role of selection in the evolution of human mitochondrial genomes. Genetics 2006, 172: 373–387.
- 82Howell N, Howell C, Elson JL. Time dependency of molecular rate estimates for mtDNA: this is not the time for wishful thinking. Heredity 2008, 101: 107–108.
- 83Elson JL, Herrnstadt C, Preston G, Thal L, Morris CM, Edwardson JA, Beal MF, Turnbull DM, Howell N. Does the mitochondrial genome play a role in the etiology of Alzheimer's disease? Hum Genet 2006, 119: 241–254.
- 84Finnila S, Lehtonen MS, Majamaa K. Phylogenetic network for European mtDNA. Am J Hum Genet 2001, 68: 1475–1484.
- 85Zifa E, Giannouli S, Theotokis P, Stamatis O, Mamuris Z, Stathopoulos C. Mitochondrial tRNA mutations—clinical and functional perturbations. RNA Biol 2007, 4: 38–66.
- 86Pancrudo J, Shanske S, Coku J, Lu J, Mardach R, Akman O, Krishna S, Bonilla E, DiMauro S. Mitochondrial myopathy associated with a novel mutation in mtDNA. Neuromusc Disord 2007, 17: 651–654.
- 87Uusimaa J, Finnila S, Remes AM, Rantala H, Vainionpaa L, Hassinen IE, Majamaa K. Molecular epidemiology of childhood mitochondrial encephalomyopathies in a Finnish population: sequence analysis of entire mtDNA of 17 children reveals heteroplasmic mutations in tRNAArg, tRNAGlu, and tRNALeu(UUR) genes. Pediatrics 2004, 114: 443–450.
- 88Shoffner JM, Lott MT, Lezza AMS, Seibel P, Ballinger SW, Wallace DC. Myoclonic epilepsy and ragged-red fiber disease (MERRF) is associated with a mitochondrial DNA transfer RNALys mutation. Cell 1990, 61: 931–937.
- 89Chomyn A, Meola G, Bresolin N, Lai ST, Scarlato G, Attardi G. In vitro genetic transfer of protein synthesis and respiration defects to mitochondrial DNA-less cells with myopathy-patient mitochondria. Mol Cell Biol 1991, 11: 2236–2244.
- 90Masucci JP, Davidson M, Koga Y, Schon EA, King MP. In vitro analysis of mutations causing myoclonus epilepsy with ragged-red fibers in the mitochondrial tRNALys gene—2 genotypes produce similar phenotypes. Mol Cell Biol 1995, 15: 2872–2881.
- 91King MP, Attardi G. Posttranscriptional regulation of the steady-state levels of mitochondrial transfer-RNAs in HELA-cells. J Biol Chem 1993, 268: 10228–10237.
- 92Enriquez JA, Chomyn A, Attardi G. mtDNA mutation in MERRF-syndrome causes defective aminoacylation of tRNALys and premature translation termination. Nat Genet 1995, 10: 47–55.
- 93Borner GV, Zeviani M, Tiranti V, Carrara F, Hoffmann S, Gerbitz KD, Lochmuller H, Pongratz D, Klopstock T, Melberg A, et al. Decreased aminoacylation of mutant tRNAs in MELAS but not in MERRF patients. Hum Mol Genet 2000, 9: 467–475.
- 94Yasukawa T, Suzuki T, Ishii N, Ohta S, Watanabe K. Wobble modification defect in tRNA disturbs codon–anticodon interaction in a mitochondrial disease. EMBO J 2001, 20: 4794–4802.
- 95Yasukawa T, Suzuki T, Ohta S, Watanabe K. Wobble modification defect suppresses translational activity of tRNAs with MERRF and MELAS mutations. Mitochondrion 2002, 2: 129–141.
- 96Ozawa M, Nishino I, Horai S, Nonaka I, Goto Y. Myoclonus epilepsy associated with ragged-red fibers: a G-to-A mutation at nucleotide pair 8363 in mitochondrial tRNALys in two families. Muscle Nerve 1997, 20: 271–278.
- 97Goto Y, Nonaka I, Horai S. A mutation in the transfer RNALeu(UUR) gene associated with the MELAS subgroup of mitochondrial encephalomyopathies. Nature 1990, 348: 651–653.
- 98Hammans SR, Sweeney MG, Brockington M, Lennox GG, Lawton NF, Kennedy CR, Morganhughes JA, Harding AE. The mitochondrial-DNA transfer RNALys A-G(8344) mutation and the syndrome of myoclonic epilepsy with ragged-red fibers (MERRF)—relationship of clinical phenotype to proportion of mutant mitochondrial DNA. Brain 1993, 116: 617–632.
- 99Vandenouweland JMW, Lemkes H, Trembath RC, Ross R, Velho G, Cohen D, Froguel P, Maassen JA. Maternally inherited diabetes and deafness is a distinct subtype of diabetes and associates with a single point mutation in the mitochondrial tRNALeu(UUR) gene. Diabetes 1994, 43: 746–751.
- 100Chomyn A, Martinuzzi A, Yoneda M, Daga A, Hurko O, Johns D, Lai ST, Nonaka I, Angelini C, Attardi G. MELAS mutation in mtDNA binding-site for transcription termination factor causes defects in protein-synthesis and in respiration but no change in levels of upstream and downstream mature transcripts. Proc Natl Acad Sci U S A 1992, 89: 4221–4225.
- 101King MP, Koga Y, Davidson M, Schon EA. Defects in mitochondrial protein-synthesis and respiratory-chain activity segregate with the transfer RNALeu(UUR) mutation associated with mitochondrial myopathy, encephalopathy, lactic-acidosis, and stroke-like episodes. Mol Cell Biol 1992, 12: 480–490.
- 102Koga Y, Davidson M, Schon EA, King MP. Fine mapping of mitochondrial RNAs derived from the mtDNA region containing a point mutation associated with MELAS. Nucleic Acids Res 1993, 21: 657–662.
- 103Kirino Y, Yasukawa T, Marjavaara SK, Jacobs HT, Holt IJ, Watanabe K, Suzuki T. Acquisition of the wobble modification in mitochondrial tRNALeu(CUN) bearing the G12300A mutation suppresses the MELAS molecular defect. Hum Mol Genet 2006, 15: 897–904.
- 104Wittenhagen LM, Kelley SO. Dimerization of a pathogenic human mitochondrial tRNA. Nat Struct Biolgy 2002, 9: 586–590.
- 105Chinnery PF, Howell N, Lightowlers RN, Turnbull DM. Molecular pathology of MELAS and MERRF—the relationship between mutation load and clinical phenotypes. Brain 1997, 120: 1713–1721.
- 106Chinnery PE, Howell N, Lightowlers RN, Turnbull DM. MELAS and MERRF—the relationship between maternal mutation load and the frequency of clinically affected offspring. Brain 1998, 121: 1889–1894.
- 107Chinnery PF, Turnbull DM. Mitochondrial genotype and clinical phenotype. J Inherit Metab Dis 1998, 21: 321–325.
- 108Moraes CT, Ciacci F, Bonilla E, Ionasescu V, Schon EA, Dimauro S. A mitochondrial transfer-RNA anticodon swap associated with a muscle disease. Nat Genet 1993, 4: 284–288.
- 109Brule H, Holmes WM, Keith G, Giege R, Florentz C. Effect of a mutation in the anticodon of human mitochondrial tRNAPro on its post-transcriptional modification pattern. Nucleic Acids Res 1998, 26: 537–543.
- 110Taylor RW, Giordano C, Davidson MM, d'Amati G, Bain H, Hayes CM, Leonard H, Barron MJ, Casali C, Santorelli FM, et al. A homoplasmic mitochondrial transfer ribonucleic acid mutation as a cause of maternally inherited hypertrophic cardiomyopathy. J Am Coll Cardiol 2003, 41: 1786–1796.
- 111Carelli V, Giordano C, d'Amati G. Pathogenic expression of homoplasmic mtDNA mutations needs a complex nuclear-mitochondrial interaction. Trends Genet 2003, 19: 257–262.
- 112Mollers M, Maniura-Weber K, Kiseljakovic E, Bust M, Hayrapetyan A, Jaksch M, Helm M, Wiesner RJ, von Kleist-Retzow JC. A new mechanism for mtDNA pathogenesis: impairment of post-transcriptional maturation leads to severe depletion of mitochondrial tRNASer(UCN) caused by T7512C and G7497A point mutations. Nucleic Acids Res 2005, 33: 5647–5658.
- 113Hutchin TP, Cortopassi GA. Mitochondrial defects and hearing loss. Cell Mol Life Sci 2000, 57: 1927–1937.
- 114Hyslop SJ, James AM, Maw M, Fischel-Ghodsian N, Murphy MP. The effect on mitochondrial function of the tRNASer(UCN)/COI A7445G mtDNA point mutation associated with maternally-inherited sensorineural deafness. Biochem Mol Biol Int 1997, 42: 567–575.
- 115Reid FM, Vernham GA, Jacobs HT. A novel mitochondrial point mutation in a maternal pedigree with sensorineural deafness. Hum Mutat 1994, 3: 243–247.
- 116Sevior KB, Hatamochi A, Stewart IA, Bykhovskaya Y, Allen-Powell DR, Fischel-Ghodsian N, Maw MA. Mitochondrial A7445G mutation in two pedigrees with palmoplantar keratoderma and deafness. Am J Med Genet 1998, 75: 179–185.
10.1002/(SICI)1096-8628(19980113)75:2<179::AID-AJMG11>3.0.CO;2-M CASPubMedWeb of Science®Google Scholar
- 117Chen J, Yuan H, Lu J, Liu X, Wang G, Zhu Y, Cheng J, Wang X, Han B, Yang L, et al. Mutations at position 7445 in the precursor of mitochondrial tRNASer(UCN) gene in three maternal Chinese pedigrees with sensorineural hearing loss. Mitochondrion 2008, 8: 285–292.
- 118Jin L, Yang A, Zhu Y, Zhao J, Wang X, Yang L, Sun D, Tao Z, Tsushima A, Wu G, et al. Mitochondrial tRNASer(UCN) gene is the hot spot for mutations associated with aminoglycoside-induced and non-syndromic hearing loss. Biochem Biophys Res Commun 2007, 361: 133–139.
- 119Pandya A, Xia X-J, Erdenetungalag R, Amendola M, Landa B, Radnaabazar J, Dangaasuren B, Van Tuyle G, Nance WE. Heterogenous point mutations in the mitochondrial tRNASer(UCN) precursor coexisting with the A1555G mutation in deaf students from Mongolia. Am J Hum Genet 1999, 65: 1803–1806.
- 120Guan MX, Enriquez JA, Fischel-Ghodsian N, Puranam RS, Lin CP, Maw MA, Attardi G. The deafness-associated mitochondrial DNA mutation at position 7445, which affects tRNASer(UCN) precursor processing, has long-range effects on NADH dehydrogenase subunit ND6 gene expression. Mol Cell Biol 1998, 18: 5868–5879.
- 121Montanari A, Besagni C, De Luca C, Morea V, Oliva R, Tramontano A, Bolotin-Fukuhara M, Frontali L, Francisci S. Yeast as a model of human mitochondrial tRNA base substitutions: Investigation of the molecular basis of respiratory defects. RNA 2008, 14: 275–283.
- 122De Luca C, Zhou YF, Montanari A, Morea V, Oliva R, Besagni C, Bolotin-Fukuhara M, Frontali L, Francisci S. Can yeast be used to study mitochondrial diseases? Biolistic tRNA mutants for the analysis of mechanisms and suppressors. Mitochondrion 2009, 9: 408–417.
- 123Fox TD, Folley LS, Mulero JJ, McMullin TW, Thorsness PE, Hedin LO, Costanzo MC. Analysis and manipulation of yeast mitochondrial genes. Methods Enzymol 1991, 194: 149–165.
- 124Rohou H, Francisci S, Rinaldi T, Frontali L, Bolotin-Fukuhara M. Reintroduction of a characterized Mit tRNA glycine mutation into yeast mitochondria provides a new tool for the study of human neurodegenerative diseases. Yeast 2001, 18: 219–227.
- 125Park H, Davidson E, King MP. Overexpressed mitochondrial leucyl-tRNA synthetase suppresses the A3243G mutation in the mitochondrial tRNALeu(UUR) gene. RNA 2008, 14: 2407–2416.
- 126Wallace DC. Mitochondrial diseases in man and mouse. Science 1999, 283: 1482–1488.
- 127Pinkert CA, Irwin MH, Johnson LW, Moffatt RJ. Mitochondria transfer into mouse ova by microinjection. Transgenic Res 1997, 6: 379–383.
- 128Levy SE, Waymire KG, Kim YL, MacGregor GR, Wallace DC. Transfer of chloramphenicol-resistant mitochondrial DNA into the chimeric mouse. Transgenic Res 1999, 8: 137–145.
- 129Inoue K, Nakada K, Ogura A, Isobe K, Goto Y, Nonaka I, Hayashi JI. Generation of mice with mitochondrial dysfunction by introducing mouse mtDNA carrying a deletion into zygotes. Nat Genet 2000, 26: 176–181.
- 130Acin-Perez R, Salazar E, Brosel S, Yang H, Schon EA, Manfredi G. Modulation of mitochondrial protein phosphorylation by soluble adenylyl cyclase ameliorates cytochrome oxidase defects. EMBO Mol Med 2009, 1: 392–406.
- 131Taivassalo T, Fu K, Johns T, Arnold D, Karpati G, Shoubridge EA. Gene shifting: a novel therapy for mitochondrial myopathy. Hum Mol Genet 1999, 8: 1047–1052.
- 132Taivassalo T, Shoubridge EA, Chen J, Kennaway NG, DiMauro S, Arnold DL, Haller RG. Aerobic conditioning in patients with mitochondrial myopathies: physiological, biochemical, and genetic effects. Ann Neurol 2001, 50: 133–141.
- 133Guy J, Qi XP, Pallotti F, Schon EA, Manfredi G, Carelli V, Martinuzzi A, Hauswirth WW, Lewin AS. Rescue of a mitochondrial deficiency causing Leber hereditary optic neuropathy. Ann Neurol 2002, 52: 534–542.
- 134Manfredi G, Fu J, Ojaimi J, Sadlock JE, Kwong JQ, Guy J, Schon EA. Rescue of a deficiency in ATP synthesis by transfer of MTATP6, a mitochondrial DNA-encoded gene, to the nucleus. Nat Genet 2002, 30: 394–399.
- 135Wenz T, Diaz F, Spiegelman BM, Moraes CT. Activation of the PPAR/PGC-1 alpha pathway prevents a bioenergetic deficit and effectively improves a mitochondrial myopathy phenotype. Cell Metab 2008, 8: 249–256.
- 136Kolesnikova OA, Entelis NS, Mireau H, Fox TD, Martin RP, Tarassov IA. Suppression of mutations in mitochondrial DNA by tRNAs imported from the cytoplasm. Science 2000, 289: 1931–1933.
- 137Kamenski P, Smirnova E, Kolesnikova OA, Krasheninnikov IA, Martin RP, Entelis N, Tarassov I. tRNA mitochondrial import in yeast: mapping of the import determinants in the carrier protein, the precursor of mitochondrial lysyl-tRNA synthetase. Mitochondrion 2010, 10: 284–293.
- 138De Luca C, Besagni C, Frontali L, Bolotin-Fukuhara M, Francisci S. Mutations in yeast mt tRNAs: Specific and general suppression by nuclear encoded tRNA interactors. Gene 2006, 377: 169–176.
- 139Feuermann M, Francisci S, Rinaldi T, De Luca C, Rohou H, Frontali L, Bolotin-Fukuhara M. The yeast counterparts of human ‘MELAS’ mutations cause mitochondrial dysfunction that can be rescued by overexpression of the mitochondrial translation factor EF-Tu. EMBO Rep 2003, 4: 53–58.
- 140Sohm B, Frugier M, Brule H, Olszak K, Przykorska A, Florentz C. Towards understanding human mitochondrial leucine aminoacylation identity. J Mol Biol 2003, 328: 995–1010.
- 141McFarland R, Clark KM, Morris AAM, Taylor RW, Macphail S, Lightowlers RN, Turnbull DM. Multiple neonatal deaths due to a homoplasmic mitochondrial DNA mutation. Nat Genet 2002, 30: 145–146.
- 142Rorbach J, Yusoff AA, Tuppen H, Abg-Kamaludin DP, Chrzanowska-Lightowlers ZMA, Taylor RW, Turnbull DM, McFarland R, Lightowlers RN. Overexpression of human mitochondrial valyl tRNA synthetase can partially restore levels of cognate mt-tRNAVal carrying the pathogenic C25U mutation. Nucleic Acids Res 2008, 36: 3065–3074.
- 143Putz J, Dupuis B, Sissler M, Florentz C. Mamit-tRNA, a database of mammalian mitochondrial tRNA primary and secondary structures. RNA 2007, 13: 1184–1190.
- 144McLaren A, Lawson KA. How is the mouse germ-cell lineage established? Differentiation 2005, 73: 435–437.
- 145Temperley R, Richter R, Dennerlein S, Lightowlers RN, Chrzanowska-Lightowlers ZM. Hungry Codons Promote Frameshifting in Human Mitochondrial Ribosomes. Science 2010, 327: 301.