Geophysics as a hypothesis-testing tool for critical zone hydrogeology
Corresponding Author
Marc Dumont
Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
Correspondence
Marc Dumont, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO, USA.
Email: [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Validation (equal), Writing - original draft (lead), Writing - review & editing (supporting)
Search for more papers by this authorKamini Singha
Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Validation (equal), Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorCorresponding Author
Marc Dumont
Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
Correspondence
Marc Dumont, Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, CO, USA.
Email: [email protected]
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Validation (equal), Writing - original draft (lead), Writing - review & editing (supporting)
Search for more papers by this authorKamini Singha
Hydrologic Science and Engineering Program, Colorado School of Mines, Golden, Colorado, USA
Contribution: Conceptualization (equal), Formal analysis (equal), Investigation (equal), Validation (equal), Writing - original draft (supporting), Writing - review & editing (lead)
Search for more papers by this authorAbstract
Geophysical methods have long been used in earth and environmental science for the characterization of subsurface properties. While imaging the subsurface opens the “black box” of subsurface heterogeneity, we argue here that these tools can be used in a more powerful way than characterization, which is to develop and test hypotheses. Critical zone science has opened new questions and hypotheses in the hydrologic sciences holistically around controls on water fluxes between surface, biological, and underground compartments. While groundwater flows can be monitored in boreholes, water fluxes from the atmosphere to the aquifer through the soil and the root system are more complex to study than boreholes can inform upon. Here, we focus on the successful application of various geophysical tools to explore hypotheses in critical zone hydrogeology and highlight areas where future contributions could be made. Specifically, we look at questions around subsurface structural controls on flow, the dimensionality and partitioning of those flows in the subsurface, plant water uptake, and how geophysics may be used to constrain reactive transport. We also outline areas of future research that may push the boundaries of how geophysical methods are used to quantify critical zone complexity.
This article is categorized under:
- Water and Life > Nature of Freshwater Ecosystems
- Science of Water > Hydrological Processes
- Water and Life > Methods
Graphical Abstract
Illustration of four themes where geophysics has been used as a hypothesis-testing tool in critical zone (CZ) hydrogeologic studies: for imaging (A) subsurface structure and controls on hydrologic properties and processes; (B) storage and partitioning of water in the CZ, parsed here as (B1) dimensionality of infiltration and controls on aquifer recharge, and (B2) seasonal- and event-based controls on groundwater–surface water exchange; (V) tree water uptake and its role in subsurface variability; and (D) biogeochemical reactions related to water fluxes in the CZ.
CONFLICT OF INTEREST STATEMENT
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
FURTHER READING
- Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., & Slater, L. D. (2015). The emergence of hydrogeophysics for improved understanding of subsurface processes over multiple scales. Water Resources Research, 51(6), 3837–3866. https://doi.org/10.1002/2015WR017016
- Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., Linde, N., Huisman, J. A., Bour, O., Lopez Alvis, J., Hoffmann, R., Palacios, A., Cooke, A.-K., Pardo-Álvarez, Á., Blazevic, L., Pouladi, B., Haruzi, P., Fernandez Visentini, A., Nogueira, G. E. H., … Le Borgne, T. (2023). Advancing measurements and representations of subsurface heterogeneity and dynamic processes: Towards 4D hydrogeology. Hydrology and Earth System Sciences, 27(1), 255–287. https://doi.org/10.5194/hess-27-255-2023
- Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S., & Slater, L. (2015). Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53(1), 1–26. https://doi.org/10.1002/2014RG000465
- Linde, N. (2014). Falsification and corroboration of conceptual hydrological models using geophysical data. WIREs Water, 1(2), 151–171. https://doi.org/10.1002/wat2.1011
- Slater, L., & Binley, A. (2021). Advancing hydrological process understanding from long-term resistivity monitoring systems. WIREs Water, 8(3), e1513. https://doi.org/10.1002/wat2.1513
- Singha, K. (2017). Geophysics is not a silver bullet, but worth a shot. Groundwater, 55, 149. https://doi.org/10.1111/gwat.12495
REFERENCES
- Anderson, J. K., Wondzell, S. M., Gooseff, M. N., & Haggerty, R. (2005). Patterns in stream longitudinal profiles and implications for hyporheic exchange flow at the H.J. Andrews Experimental Forest, Oregon, USA. Hydrological Processes, 19(15), 2931–2949. https://doi.org/10.1002/hyp.5791
- Attia al Hagrey, S. (2007). Geophysical imaging of root-zone, trunk, and moisture heterogeneity. Journal of Experimental Botany, 58(4), 839–854. https://doi.org/10.1093/jxb/erl237
- Bakalowicz, M. (2005). Karst groundwater: A challenge for new resources. Hydrogeology Journal, 13(1), 148–160. https://doi.org/10.1007/s10040-004-0402-9
- Banks, E. W., Morgan, L. K., Sai Louie, A. J., Dempsey, D., & Wilson, S. R. (2022). Active distributed temperature sensing to assess surface water–groundwater interaction and river loss in braided river systems. Journal of Hydrology, 615, 128667. https://doi.org/10.1016/j.jhydrol.2022.128667
- Banwart, S., Bernasconi, S. M., Bloem, J., Blum, W., Brandao, M., Brantley, S., Chabaux, F., Duffy, C., Kram, P., Lair, G., Lundin, L., Nikolaidis, N., Novak, M., Panagos, P., Ragnarsdottir, K. V., Reynolds, B., Rousseva, S., De Ruiter, P., Van Gaans, P., … Zhang, B. (2011). Soil processes and functions in critical zone observatories: Hypotheses and experimental design. Vadose Zone Journal, 10(3), 974–987. https://doi.org/10.2136/vzj2010.0136
- Befus, K. M., Sheehan, A. F., Leopold, M., Anderson, S. P., & Anderson, R. S. (2011). Seismic constraints on critical zone architecture, Boulder Creek watershed, Front Range, Colorado. Vadose Zone Journal, 10(3), 915–927.
- Bengough, A. G. (2012). Water dynamics of the root zone: Rhizosphere biophysics and its control on soil hydrology. Vadose Zone Journal, 11(2), vzj2011–vzj0111. https://doi.org/10.2136/vzj2011.0111
- Benson, A. R., Koeser, A. K., & Morgenroth, J. (2019). Estimating conductive sapwood area in diffuse and ring porous trees with electronic resistance tomography. Tree Physiology, 39(3), 484–494. https://doi.org/10.1093/treephys/tpy092
- Bhaskar, A. S., Harvey, J. W., & Henry, E. J. (2012). Resolving hyporheic and groundwater components of streambed water flux using heat as a tracer. Water Resources Research, 48(8). https://doi.org/10.1029/2011WR011784
- Binley, A., & Slater, L. (2020). Resistivity and induced polarization: Theory and applications to the near-surface earth. Cambridge University Press.
10.1017/9781108685955 Google Scholar
- Binley, A., Ullah, S., Heathwaite, A. L., Heppell, C., Byrne, P., Lansdown, K., Trimmer, M., & Zhang, H. (2013). Revealing the spatial variability of water fluxes at the groundwater-surface water interface. Water Resources Research, 49(7), 3978–3992. https://doi.org/10.1002/wrcr.20214
- Boaga, J., Rossi, M., & Cassiani, G. (2013). Monitoring soil-plant interactions in an apple orchard using 3D electrical resistivity tomography. Procedia Environmental Sciences, 19, 394–402. https://doi.org/10.1016/j.proenv.2013.06.045
10.1016/j.proenv.2013.06.045 Google Scholar
- Boano, F., Harvey, J. W., Marion, A., Packman, A. I., Revelli, R., Ridolfi, L., & Wörman, A. (2014). Hyporheic flow and transport processes: Mechanisms, models, and biogeochemical implications. Reviews of Geophysics, 52(4), 603–679. https://doi.org/10.1002/2012RG000417
- Bonacci, O., Ljubenkov, I., & Roje-Bonacci, T. (2006). Karst flash floods: An example from the Dinaric karst (Croatia). Natural Hazards and Earth System Sciences, 6(2), 195–203. https://doi.org/10.5194/nhess-6-195-2006
- Brantley, S. L., Eissenstat, D. M., Marshall, J. A., Godsey, S. E., Balogh-Brunstad, Z., Karwan, D. L., Papuga, S. A., Roering, J., Dawson, T. E., Evaristo, J., Chadwick, O., McDonnell, J. J., & Weathers, K. C. (2017). Reviews and syntheses: On the roles trees play in building and plumbing the critical zone. Biogeosciences, 14(22), 5115–5142. https://doi.org/10.5194/bg-14-5115-2017
- Brantley, S. L., Megonigal, J. P., Scatena, F. N., Balogh-Brunstad, Z., Barnes, R. T., Bruns, M. A., Van Cappellen, P., Dontsova, K., Hartnett, H. E., Hartshorn, A. S., Heimsath, A., Herndon, E., Jin, L., Keller, C. K., Leake, J. R., McDowell, W. H., Meinzer, F. C., Mozdzer, T. J., Petsch, S., … Yoo, K. (2011). Twelve testable hypotheses on the geobiology of weathering. Geobiology, 9(2), 140–165. https://doi.org/10.1111/j.1472-4669.2010.00264.x
- Briggs, M. A., Nelson, N., Gardner, P., Solomon, D. K., Terry, N., & Lane, J. W. (2019). Wetland-scale mapping of preferential fresh groundwater discharge to the Colorado River. Groundwater, 57(5), 737–748. https://doi.org/10.1111/gwat.12866
- Brooks, J. R., Barnard, H. R., Coulombe, R., & McDonnell, J. J. (2010). Ecohydrologic separation of water between trees and streams in a Mediterranean climate. Nature Geoscience, 3(2), 100–104. https://doi.org/10.1038/ngeo722
- Bruckshaw, J. M. (1959). Prospects of geophysical prospecting. Geophysical Prospecting, 7(3), 267–272. https://doi.org/10.1111/j.1365-2478.1959.tb01468.x
10.1111/j.1365-2478.1959.tb01468.x Google Scholar
- Brunetti, C., & Linde, N. (2018). Impact of petrophysical uncertainty on Bayesian hydrogeophysical inversion and model selection. Advances in Water Resources, 111, 346–359. https://doi.org/10.1016/j.advwatres.2017.11.028
- Bui, E. N. (2016). Data-driven critical zone science: A new paradigm. Science of the Total Environment, 568, 587–593. https://doi.org/10.1016/j.scitotenv.2016.01.202
- Burt, T. P., & McDonnell, J. J. (2015). Whither field hydrology? The need for discovery science and outrageous hydrological hypotheses. Water Resources Research, 51(8), 5919–5928. https://doi.org/10.1002/2014WR016839
- Callahan, R. P., Riebe, C. S., Sklar, L. S., Pasquet, S., Ferrier, K. L., Hahm, W. J., Taylor, N. J., Grana, D., Flinchum, B. A., Hayes, J. L., & Holbrook, W. S. (2022). Forest vulnerability to drought controlled by bedrock composition. Nature Geoscience, 15(9), 714–719. https://doi.org/10.1038/s41561-022-01012-2
- Cardenas, M. B., & Kanarek, M. R. (2014). Soil moisture variation and dynamics across a wildfire burn boundary in a loblolly pine (Pinus taeda) forest. Journal of Hydrology, 519, 490–502. https://doi.org/10.1016/j.jhydrol.2014.07.016
- Carrière, S. D., & Chalikakis, K. (2022). Hydrogeophysical monitoring of intense rainfall infiltration in the karst critical zone: A unique electrical resistivity tomography data set. Data in Brief, 40, 107762. https://doi.org/10.1016/j.dib.2021.107762
- Carrière, S. D., Chalikakis, K., Danquigny, C., Clément, R., & Emblanch, C. (2015). Feasibility and limits of electrical resistivity tomography to monitor water infiltration through karst medium during a rainy event. In B. Andreo, F. Carrasco, J. J. Durán, P. Jiménez, & J. W. LaMoreaux (Eds.), Hydrogeological and environmental investigations in karst systems (pp. 45–55). Springer. https://doi.org/10.1007/978-3-642-17435-3_6
10.1007/978-3-642-17435-3_6 Google Scholar
- Carrière, S. D., Martin-StPaul, N. K., Cakpo, C. B., Patris, N., Gillon, M., Chalikakis, K., Doussan, C., Olioso, A., Babic, M., Jouineau, A., Simioni, G., & Davi, H. (2020). The role of deep vadose zone water in tree transpiration during drought periods in karst settings – Insights from isotopic tracing and leaf water potential. Science of the Total Environment, 699, 134332. https://doi.org/10.1016/j.scitotenv.2019.134332
- Carrière, S. D., Ruffault, J., Pimont, F., Doussan, C., Simioni, G., Chalikakis, K., Limousin, J. M., Scotti, I., Courdier, F., Cakpo, C. B., Davi, H., & Martin-StPaul, N. K. (2020). Impact of local soil and subsoil conditions on inter-individual variations in tree responses to drought: Insights from electrical resistivity tomography. Science of the Total Environment, 698, 134247. https://doi.org/10.1016/j.scitotenv.2019.134247
- Chalikakis, K., Plagnes, V., Guerin, R., Valois, R., & Bosch, F. P. (2011). Contribution of geophysical methods to karst-system exploration: An overview. Hydrogeology Journal, 19(6), 1169–1180. https://doi.org/10.1007/s10040-011-0746-x
- Chambers, J. E., Wilkinson, P. B., Uhlemann, S., Sorensen, J. P. R., Roberts, C., Newell, A. J., Ward, W. O. C., Binley, A., Williams, P. J., Gooddy, D. C., Old, G., & Bai, L. (2014). Derivation of lowland riparian wetland deposit architecture using geophysical image analysis and interface detection. Water Resources Research, 50(7), 5886–5905. https://doi.org/10.1002/2014WR015643
- Chambers, J., Gunn, D. A., Wilkinson, P. B., Meldrum, P. I., Haslam, E., Holyoake, S., Kirkham, M., Kuras, O., Merritt, A., & Wragg, J. (2014). 4D electrical resistivity tomography monitoring of soil moisture dynamics in an operational railway embankment. Near Surface Geophysics, 12(1), 61–72. https://doi.org/10.3997/1873-0604.2013002
- Champollion, C., Deville, S., Chery, J., Doerflinger, E., Moigne, N. L., Bayer, R., Vernant, P., & Mazzilli, N. (2018). Estimating epikarst water storage by time-lapse surface-to-depth gravity measurements. Hydrology and Earth System Sciences, 22(7), 3825–3839. https://doi.org/10.5194/hess-22-3825-2018
- Charlet, L., Chakraborty, S., Appelo, C. A. J., Roman-Ross, G., Nath, B., Ansari, A. A., Lanson, M., Chatterjee, D., & Mallik, S. B. (2007). Chemodynamics of an arsenic “hotspot” in a West Bengal aquifer: A field and reactive transport modeling study. Applied Geochemistry, 22(7), 1273–1292. https://doi.org/10.1016/j.apgeochem.2006.12.022
- Chen, J., Hubbard, S. S., & Williams, K. H. (2013). Data-driven approach to identify field-scale biogeochemical transitions using geochemical and geophysical data and hidden Markov models: Development and application at a uranium-contaminated aquifer. Water Resources Research, 49(10), 6412–6424. https://doi.org/10.1002/wrcr.20524
- Chen, J., Hubbard, S. S., Williams, K. H., Flores Orozco, A., & Kemna, A. (2012). Estimating the spatiotemporal distribution of geochemical parameters associated with biostimulation using spectral induced polarization data and hierarchical Bayesian models. Water Resources Research, 48(5). https://doi.org/10.1029/2011WR010992
10.1029/2011WR010992 Google Scholar
- Clement, R., Fargier, Y., Dubois, V., Gance, J., Gros, E., & Forquet, N. (2020). OhmPi: An open source data logger for dedicated applications of electrical resistivity imaging at the small and laboratory scale. HardwareX, 8, e00122. https://doi.org/10.1016/j.ohx.2020.e00122
- Cockett, R., Kang, S., Heagy, L. J., Pidlisecky, A., & Oldenburg, D. W. (2015). SimPEG: An open source framework for simulation and gradient based parameter estimation in geophysical applications. Computers & Geosciences, 85, 142–154. https://doi.org/10.1016/j.cageo.2015.09.015
- Constantz, J. (2008). Heat as a tracer to determine streambed water exchanges. Water Resources Research, 44(4), 1–20. https://doi.org/10.1029/2008WR006996
- Crook, N., Binley, A., Knight, R., Robinson, D. A., Zarnetske, J., & Haggerty, R. (2008). Electrical resistivity imaging of the architecture of substream sediments. Water Resources Research, 44(4), 1–11. https://doi.org/10.1029/2008WR006968
- Dafflon, B., Hubbard, S., Ulrich, C., Peterson, J., Wu, Y., Wainwright, H., & Kneafsey, T. J. (2016). Geophysical estimation of shallow permafrost distribution and properties in an ice-wedge polygon-dominated Arctic tundra region. Geophysics, 81(1), WA247–WA263. https://doi.org/10.1190/geo2015-0175.1
- Dafflon, B., Léger, E., Falco, N., Wainwright, H. M., Peterson, J., Chen, J., Williams, K. H., & Hubbard, S. S. (2023). Advanced monitoring of soil-vegetation co-dynamics reveals the successive controls of snowmelt on soil moisture and on plant seasonal dynamics in a mountainous watershed. Frontiers in Earth Science, 11, 976227–976244. https://doi.org/10.3389/feart.2023.976227
- Dawson, T. E., Hahm, W. J., & Crutchfield-Peters, K. (2020). Digging deeper: What the critical zone perspective adds to the study of plant ecophysiology. New Phytologist, 226(3), 666–671. https://doi.org/10.1111/nph.16410
- Day-Lewis, F. D., Singha, K., & Binley, A. M. (2005). Applying petrophysical models to radar travel time and electrical resistivity tomograms: Resolution-dependent limitations. Journal of Geophysical Research: Solid Earth, 110(B8), 1–17. https://doi.org/10.1029/2004JB003569
10.1029/2004JB003569 Google Scholar
- de Pasquale, G., Valois, R., Schaffer, N., & MacDonell, S. (2022). Contrasting geophysical signatures of a relict and an intact Andean rock glacier. The Cryosphere, 16(5), 1579–1596. https://doi.org/10.5194/tc-16-1579-2022
- Donaldson, A. M., Zimmer, M. A., Huang, M.-H., Johnson, K. N., Hudson-Rasmussen, B., Finnegan, N. J., Joseph, N., Nerissa, B., & Callahan, R. (2023). Expect the unexpected: Four hypotheses to explain unexpected critical zone symmetry in hillslopes with opposing aspect. ESS Open Archive. https://doi.org/10.22541/essoar.167457985.55992407/v1
10.22541/essoar.167457985.55992407/v1 Google Scholar
- Doughty, M., Sawyer, A. H., Wohl, E., & Singha, K. (2020). Mapping increases in hyporheic exchange from channel-spanning logjams. Journal of Hydrology, 587, 124931. https://doi.org/10.1016/j.jhydrol.2020.124931
- Dumont, M., Reninger, P. A., Aunay, B., Pryet, A., Jougnot, D., Join, J. L., Michon, L., & Martelet, G. (2021). Hydrogeophysical characterization in a volcanic context from local to regional scales combining airborne electromagnetism and magnetism. Geophysical Research Letters, 48(12), e2020GL092000. https://doi.org/10.1029/2020GL092000
- Dumont, M., Reninger, P. A., Pryet, A., Martelet, G., Aunay, B., & Join, J. L. (2018). Agglomerative hierarchical clustering of airborne electromagnetic data for multi-scale geological studies. Journal of Applied Geophysics, 157, 1–9. https://doi.org/10.1016/j.jappgeo.2018.06.020
- Ehosioke, S., Garré, S., Huisman, J. A., Zimmermann, E., Placencia-Gomez, E., Javaux, M., & Nguyen, F. (2023). Spectroscopic approach toward unraveling the electrical signature of roots. Journal of Geophysical Research: Biogeosciences, 128(4), e2022JG007281. https://doi.org/10.1029/2022JG007281
- Enemark, T., Peeters, L. J. M., Mallants, D., & Batelaan, O. (2019). Hydrogeological conceptual model building and testing: A review. Journal of Hydrology, 569, 310–329. https://doi.org/10.1016/j.jhydrol.2018.12.007
- Falkenmark, M., & Rockström, J. (2006). The new blue and green water paradigm: Breaking new ground for water resources planning and management. Journal of Water Resources Planning and Management, 132(3), 129–132. https://doi.org/10.1061/(ASCE)0733-9496(2006)132:3(129)
- Fan, B., Liu, X., Zhu, Q., Qin, G., Li, J., Lin, H., & Guo, L. (2020). Exploring the interplay between infiltration dynamics and critical zone structures with multiscale geophysical imaging: A review. Geoderma, 374, 114431. https://doi.org/10.1016/j.geoderma.2020.114431
- Flinchum, B. A., Holbrook, W. S., Grana, D., Parsekian, A. D., Carr, B. J., Hayes, J. L., & Jiao, J. (2018). Estimating the water holding capacity of the critical zone using near-surface geophysics. Hydrological Processes, 32(22), 3308–3326. https://doi.org/10.1002/hyp.13260
- Gaillardet, J., Braud, I., Hankard, F., Anquetin, S., Bour, O., Dorfliger, N., De Dreuzy, J. R., Galle, S., Galy, C., Gogo, S., Gourcy, L., Habets, F., Laggoun, F., Longuevergne, L., Le Borgne, T., Naaim-Bouvet, F., Nord, G., Simonneaux, V., Six, D., … Zitouna, R. (2018). OZCAR: The French network of critical zone observatories. Vadose Zone Journal, 17(1), 1–24. https://doi.org/10.2136/vzj2018.04.0067
- Gambill, I., McFadden, S., Marshall, A., Alexis, N.-S., Wohl, E., & Singha, K. (2024). Exploring the influence of channel complexity and 1 discharge on transient storage and 2 hyporheic exchange in stream systems: Insights from multiple logjams and channels. Water Resources Research.
- Gariglio, F. P., Tonina, D., & Luce, C. H. (2013). Spatiotemporal variability of hyporheic exchange through a pool-riffle-pool sequence. Water Resources Research, 49(11), 7185–7204. https://doi.org/10.1002/wrcr.20419
- Garing, C., Luquot, L., Pezard, P. A., & Gouze, P. (2014). Electrical and flow properties of highly heterogeneous carbonate rocks. AAPG Bulletin, 98(1), 49–66. https://doi.org/10.1306/05221312134
- Garré, S., Hyndman, D., Mary, B., & Werban, U. (2021). Geophysics conquering new territories: The rise of “agrogeophysics”. Vadose Zone Journal, 20(4), e20115. https://doi.org/10.1002/vzj2.20115
- Garré, S., Javaux, M., Vanderborght, J., Pagès, L., & Vereecken, H. (2011). Three-dimensional electrical resistivity tomography to monitor root zone water dynamics. Vadose Zone Journal, 10(1), 412–424. https://doi.org/10.2136/vzj2010.0079
- Gerecht, K. E., Cardenas, M. B., Guswa, A. J., Sawyer, A. H., Nowinski, J. D., & Swanson, T. E. (2011). Dynamics of hyporheic flow and heat transport across a bed-to-bank continuum in a large regulated river. Water Resources Research, 47(3). https://doi.org/10.1029/2010WR009794
- Ghosh, U., Borgne, T. L., Jougnot, D., Linde, N., & Méheust, Y. (2018). Geoelectrical signatures of reactive mixing: A theoretical assessment. Geophysical Research Letters, 45(8), 3489–3498. https://doi.org/10.1002/2017GL076445
- Guo, L., Mount, G. J., Hudson, S., Lin, H., & Levia, D. (2020). Pairing geophysical techniques improves understanding of the near-surface critical zone: Visualization of preferential routing of stemflow along coarse roots. Geoderma, 357, 113953. https://doi.org/10.1016/j.geoderma.2019.113953
- Haeni, F. P. (1986). Application of continuous seismic reflection methods to hydrologic studies. Groundwater, 24(1), 23–31. https://doi.org/10.1111/j.1745-6584.1986.tb01455.x
- Hammond, J. C., Harpold, A. A., Weiss, S., & Kampf, S. K. (2019). Partitioning snowmelt and rainfall in the critical zone: Effects of climate type and soil properties. Hydrology and Earth System Sciences, 23(9), 3553–3570. https://doi.org/10.5194/hess-23-3553-2019
- Han, Z., Kang, X., Singha, K., Wu, J., & Shi, X. (2024). Real-time monitoring of in situ chemical oxidation (ISCO) of dissolved TCE by integrating electrical resistivity tomography and reactive transport modeling. Water Research, 252, 121195. https://doi.org/10.1016/j.watres.2024.121195
- Harmon, R. E., Barnard, H. R., Day-Lewis, F. D., Mao, D., & Singha, K. (2021). Exploring environmental factors that drive diel variations in tree water storage using wavelet analysis. Frontiers in Water, 3, 682285–682307. https://doi.org/10.3389/frwa.2021.682285
10.3389/frwa.2021.682285 Google Scholar
- Hartzell, S., Bartlett, M. S., & Porporato, A. (2017). The role of plant water storage and hydraulic strategies in relation to soil moisture availability. Plant and Soil, 419(1-2), 503–521. https://doi.org/10.1007/s11104-017-3341-7
- Haverkamp, R., Vauclin, M., Touma, J., Wierenga, P. J., & Vachaud, G. (1977). A comparison of numerical simulation models for one-dimensional infiltration. Soil Science Society of America Journal, 41(2), 285–294. https://doi.org/10.2136/sssaj1977.03615995004100020024x
- Hayes, J. L., Riebe, C. S., Holbrook, W. S., Flinchum, B. A., & Hartsough, P. C. (2019). Porosity production in weathered rock: Where volumetric strain dominates over chemical mass loss. Science Advances, 5(9), eaao0834. https://doi.org/10.1126/sciadv.aao0834
- Hermans, T., Goderniaux, P., Jougnot, D., Fleckenstein, J. H., Brunner, P., Nguyen, F., Linde, N., Huisman, J. A., Bour, O., Lopez Alvis, J., Hoffmann, R., Palacios, A., Cooke, A. K., Pardo-Álvarez, Á., Blazevic, L., Pouladi, B., Haruzi, P., Fernandez Visentini, A., Nogueira, G. E. H., … le Borgne, T. (2023). Advancing measurements and representations of subsurface heterogeneity and dynamic processes: Towards 4D hydrogeology. Hydrology and Earth System Sciences, 27(1), 255–287. https://doi.org/10.5194/hess-27-255-2023
- Hermans, T., Oware, E., & Caers, J. (2016). Direct prediction of spatially and temporally varying physical properties from time-lapse electrical resistance data. Water Resources Research, 52(9), 7262–7283. https://doi.org/10.1002/2016WR019126
- Hoffmann, J., Zebker, H. A., Galloway, D. L., & Amelung, F. (2001). Seasonal subsidence and rebound in Las Vegas Valley, Nevada, observed by synthetic aperture radar interferometry. Water Resources Research, 37(6), 1551–1566. https://doi.org/10.1029/2000WR900404
- Hu, K., Jougnot, D., Huang, Q., Looms, M. C., & Linde, N. (2020). Advancing quantitative understanding of self-potential signatures in the critical zone through long-term monitoring. Journal of Hydrology, 585, 124771. https://doi.org/10.1016/j.jhydrol.2020.124771
- Hubbard, S. S., & Linde, N. (2011). Hydrogeophysics. In P. A. Wilderer (Ed.), Treatise on water science (Vol. 2, pp. 401–434). Elsevier.
- Ikard, S. J., Briggs, M. A., & Lane, J. W. (2021). Investigation of scale-dependent groundwater/surface-water exchange in Rivers by gradient self-potential logging: Numerical modeling and field experiments. Journal of Environmental and Engineering Geophysics, 26, 83–98. https://doi.org/10.32389/JEEG20-066
- Jayawickreme, D. H., Van Dam, R. L., & Hyndman, D. W. (2008). Subsurface imaging of vegetation, climate, and root-zone moisture interactions. Geophysical Research Letters, 35(18), L18404. https://doi.org/10.1029/2008GL034690
- Jayawickreme, D. H., Van Dam, R. L., & Hyndman, D. W. (2010). Hydrological consequences of land-cover change: Quantifying the influence of plants on soil moisture with time-lapse electrical resistivity. Geophysics, 75(4), WA43–WA50. https://doi.org/10.1190/1.3464760
- Johnson, T. C., Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., & Elwaseif, M. (2012). Monitoring groundwater-surface water interaction using time-series and time-frequency analysis of transient three-dimensional electrical resistivity changes. Water Resources Research, 48(7), 1–13. https://doi.org/10.1029/2012WR011893
- Johnson, T., Versteeg, R., Thomle, J., Hammond, G., Chen, X., & Zachara, J. (2015). Four-dimensional electrical conductivity monitoring of stage-driven river water intrusion: Accounting for water table effects using a transient mesh boundary and conditional inversion constraints. Water Resources Research, 51(8), 6177–6196. https://doi.org/10.1002/2014WR016129
- Jongmans, D., & Garambois, S. (2007). Geophysical investigation of landslides : A review. Bulletin de La Société Géologique de France, 178(2), 101–112. https://doi.org/10.2113/gssgfbull.178.2.101
- Jougnot, D., Linde, N., Haarder, E. B., & Looms, M. C. (2015). Monitoring of saline tracer movement with vertically distributed self-potential measurements at the HOBE agricultural test site, Voulund, Denmark. Journal of Hydrology, 521, 314–327. https://doi.org/10.1016/j.jhydrol.2014.11.041
- Jourde, H., Lafare, A., Mazzilli, N., Belaud, G., Neppel, L., Dörfliger, N., & Cernesson, F. (2014). Flash flood mitigation as a positive consequence of anthropogenic forcing on the groundwater resource in a karst catchment. Environmental Earth Sciences, 71(2), 573–583. https://doi.org/10.1007/s12665-013-2678-3
- Kalbus, E., Reinstorf, F., & Schirmer, M. (2006). Measuring methods for groundwater – surface water interactions: A review. Hydrology and Earth System Sciences, 10(6), 873–887. https://doi.org/10.5194/hess-10-873-2006
- Kessouri, P., Furman, A., Huisman, J. A., Martin, T., Mellage, A., Ntarlagiannis, D., Bücker, M., Ehosioke, S., Fernandez, P., Flores-Orozco, A., Kemna, A., Nguyen, F., Pilawski, T., Saneiyan, S., Schmutz, M., Schwartz, N., Weigand, M., Wu, Y., Zhang, C., & Placencia-Gomez, E. (2019). Induced polarization applied to biogeophysics: Recent advances and future prospects. Near Surface Geophysics, 17[Special Issue-Recent Developments in Induced Polarization], 595–621. https://doi.org/10.1002/nsg.12072
- Konikow, L. F., & Bredehoeft, J. D. (1992). Ground-water models cannot be validated. Advances in Water Resources, 15(1), 75–83. https://doi.org/10.1016/0309-1708(92)90033-X
- Korus, J. (2018). Combining hydraulic head analysis with airborne electromagnetics to detect and map impermeable aquifer boundaries. Water, 10(8), 975. https://doi.org/10.3390/w10080975
- Krause, S., Hannah, D. M., Fleckenstein, J. H., Heppell, C. M., Kaeser, D., Pickup, R., Pinay, G., Robertson, A. L., & Wood, P. J. (2011). Inter-disciplinary perspectives on processes in the hyporheic zone. Ecohydrology, 4(4), 481–499. https://doi.org/10.1002/eco.176
- Lachassagne, P., Dewandel, B., & Wyns, R. (2021). Review: Hydrogeology of weathered crystalline/hard-rock aquifers—Guidelines for the operational survey and management of their groundwater resources. Hydrogeology Journal, 29(8), 2561–2594. https://doi.org/10.1007/s10040-021-02339-7
- Lachassagne, P., Wyns, R., & Dewandel, B. (2011). The fracture permeability of hard rock aquifers is due neither to tectonics, nor to unloading, but to weathering processes. Terra Nova, 23(3), 145–161. https://doi.org/10.1111/j.1365-3121.2011.00998.x
- Larochelle, S., Gualandi, A., Chanard, K., & Avouac, J.-P. (2018). Identification and extraction of seasonal geodetic signals due to surface load variations. Journal of Geophysical Research: Solid Earth, 123(12), 11031–11047. https://doi.org/10.1029/2018JB016607
10.1029/2018JB016607 Google Scholar
- Larose, E., Carrière, S., Voisin, C., Bottelin, P., Baillet, L., Guéguen, P., Walter, F., Jongmans, D., Guillier, B., Garambois, S., Gimbert, F., & Massey, C. (2015). Environmental seismology: What can we learn on earth surface processes with ambient noise? Journal of Applied Geophysics, 116, 62–74. https://doi.org/10.1016/j.jappgeo.2015.02.001
- Lautz, L. K. (2010). Impacts of nonideal field conditions on vertical water velocity estimates from streambed temperature time series: Velocity from temperature data under nonideal conditions. Water Resources Research, 46(1). https://doi.org/10.1029/2009WR007917
- Lesparre, N., Girard, J.-F., Jeannot, B., Weill, S., Dumont, M., Boucher, M., Viville, D., Pierret, M. C., Legchenko, A., & Delay, F. (2020). Magnetic resonance sounding measurements as posterior information to condition hydrological model parameters: Application to a hard-rock headwater catchment. Journal of Hydrology, 587, 124941. https://doi.org/10.1016/j.jhydrol.2020.124941
- Ley-Cooper, A. Y., Brodie, R. C., & Richardson, M. (2019). AusAEM: Australia's airborne electromagnetic continental-scale acquisition program. Exploration Geophysics, 51, 193–202. https://doi.org/10.1080/08123985.2019.1694393
- Li, L., Maher, K., Navarre-Sitchler, A., Druhan, J., Meile, C., Lawrence, C., Moore, J., Perdrial, J., Sullivan, P., Thompson, A., Jin, L., Bolton, E. W., Brantley, S. L., Dietrich, W. E., Mayer, K. U., Steefel, C. I., Valocchi, A., Zachara, J., Kocar, B., … Beisman, J. (2017). Expanding the role of reactive transport models in critical zone processes. Earth-Science Reviews, 165, 280–301. https://doi.org/10.1016/j.earscirev.2016.09.001
- Linde, N. (2014). Falsification and corroboration of conceptual hydrological models using geophysical data. WIREs Water, 1(2), 151–171. https://doi.org/10.1002/wat2.1011
- Looker, N., Martin, J., Jencso, K., & Hu, J. (2016). Contribution of sapwood traits to uncertainty in conifer sap flow as estimated with the heat-ratio method. Agricultural and Forest Meteorology, 223, 60–71. https://doi.org/10.1016/j.agrformet.2016.03.014
- Maher, K., & Chamberlain, C. P. (2014). Hydrologic regulation of chemical weathering and the geologic carbon cycle. Science, 343(6178), 1502–1504. https://doi.org/10.1126/science.1250770
- Mares, R., Barnard, H. R., Mao, D., Revil, A., & Singha, K. (2016). Examining diel patterns of soil and xylem moisture using electrical resistivity imaging. Journal of Hydrology, 536, 327–338. https://doi.org/10.1016/j.jhydrol.2016.03.003
- Mariotte, E. (1686). Traite du mouvement des eaux et des autres corps fluides. Academie Royale des Sciences.
- Mary, B., Peruzzo, L., Boaga, J., Schmutz, M., Wu, Y., Hubbard, S. S., & Cassiani, G. (2018). Small-scale characterization of vine plant root water uptake via 3-D electrical resistivity tomography and mise-à-la-masse method. Hydrology and Earth System Sciences, 22(10), 5427–5444. https://doi.org/10.5194/hess-22-5427-2018
- Mary, B., Vanella, D., Consoli, S., & Cassiani, G. (2019). Assessing the extent of citrus trees root apparatus under deficit irrigation via multi-method geo-electrical imaging. Scientific Reports, 9(1), 9913. https://doi.org/10.1038/s41598-019-46107-w
- Mavko, G., Mukerji, T., & Dvorkin, J. (2020). The rock physics handbook. Cambridge University Press.
10.1017/9781108333016 Google Scholar
- McGlynn, B. L., McDonnell, J. J., Shanley, J. B., & Kendall, C. (1999). Riparian zone flowpath dynamics during snowmelt in a small headwater catchment. Journal of Hydrology, 222(1-4), 75–92.
- McLachlan, P. J., Chambers, J. E., Uhlemann, S. S., & Binley, A. (2017). Geophysical characterisation of the groundwater–surface water interface. Advances in Water Resources, 109, 302–319. https://doi.org/10.1016/j.advwatres.2017.09.016
- McLachlan, P., Blanchy, G., Chambers, J., Sorensen, J., Uhlemann, S., Wilkinson, P., & Binley, A. (2021). The application of electromagnetic induction methods to reveal the hydrogeological structure of a riparian wetland. Water Resources Research, 57(6), e2020WR029221. https://doi.org/10.1029/2020WR029221
- McNamara, J. P., Chandler, D., Seyfried, M., & Achet, S. (2005). Soil moisture states, lateral flow, and streamflow generation in a semi-arid, snowmelt-driven catchment. Hydrological Processes, 19(20), 4023–4038. https://doi.org/10.1002/hyp.5869
- Mellage, A., Smeaton, C. M., Furman, A., Atekwana, E. A., Rezanezhad, F., & Van Cappellen, P. (2018). Linking spectral induced polarization (SIP) and subsurface microbial processes: Results from sand column incubation experiments. Environmental Science & Technology, 52(4), 2081–2090. https://doi.org/10.1021/acs.est.7b04420
- Mellage, A., Zakai, G., Efrati, B., Pagel, H., & Schwartz, N. (2022). Paraquat sorption- and organic matter-induced modifications of soil spectral induced polarization (SIP) signals. Geophysical Journal International, 229(2), 1422–1433. https://doi.org/10.1093/gji/ggab531
- Mewes, B., Hilbich, C., Delaloye, R., & Hauck, C. (2017). Resolution capacity of geophysical monitoring regarding permafrost degradation induced by hydrological processes. The Cryosphere, 11(6), 2957–2974. https://doi.org/10.5194/tc-11-2957-2017
- Michot, D., Benderitter, Y., Dorigny, A., Nicoullaud, B., King, D., & Tabbagh, A. (2003). Spatial and temporal monitoring of soil water content with an irrigated corn crop cover using surface electrical resistivity tomography. Water Resources Research, 39(5). https://doi.org/10.1029/2002WR001581
- Minsley, B. J., Pastick, N. J., James, S. R., Brown, D. R. N., Wylie, B. K., Kass, M. A., & Romanovsky, V. E. (2022). Rapid and gradual permafrost thaw: A tale of two sites. Geophysical Research Letters, 49(21), e2022GL100285. https://doi.org/10.1029/2022GL100285
- Neumann, R. B., & Cardon, Z. G. (2012). The magnitude of hydraulic redistribution by plant roots: A review and synthesis of empirical and modeling studies. The New Phytologist, 194(2), 337–352. https://doi.org/10.1111/j.1469-8137.2012.04088.x
- Nguyen, P. K. T., Nam, M. J., & Park, C. (2015). A review on time-lapse seismic data processing and interpretation. Geosciences Journal, 19(2), 375–392. https://doi.org/10.1007/s12303-014-0054-2
- Nimmo, J. R., Perkins, K. S., Schmidt, K. M., Miller, D. M., Stock, J. D., & Singha, K. (2009). Hydrologic characterization of desert soils with varying degrees of pedogenesis: 1. Field experiments evaluating plant-relevant soil water behavior. Vadose Zone Journal, 8(2), 480–495. https://doi.org/10.2136/vzj2008.0052
- Oreskes, N., Shrader-Frechette, K., & Belitz, K. (1994). Verification, validation, and confirmation of numerical models in the earth sciences. Science, 263(5147), 641–646. https://doi.org/10.1126/science.263.5147.641
- Parsekian, A. D., Singha, K., Minsley, B. J., Holbrook, W. S., & Slater, L. (2015). Multiscale geophysical imaging of the critical zone. Reviews of Geophysics, 53(1), 1–26. https://doi.org/10.1002/2014RG000465
- Pepin, K., Knight, R., Goebel-Szenher, M., & Kang, S. (2022). Managed aquifer recharge site assessment with electromagnetic imaging: Identification of recharge flow paths. Vadose Zone Journal, 21(3), e20192. https://doi.org/10.1002/vzj2.20192
- Price, J. S., & Schlotzhauer, S. M. (1999). Importance of shrinkage and compression in determining water storage changes in peat: The case of a mined peatland. Hydrological Processes, 13(16), 2591–2601. https://doi.org/10.1002/(SICI)1099-1085(199911)13:16<2591::AID-HYP933>3.0.CO;2-E
- Rücker, C., Günther, T., & Wagner, F. M. (2017). pyGIMLi: An open-source library for modelling and inversion in geophysics. Computers & Geosciences, 109, 106–123. https://doi.org/10.1016/j.cageo.2017.07.011
- Rangel, R. C., Parsekian, A. D., Farquharson, L. M., Jones, B. M., Ohara, N., Creighton, A. L., Gaglioti, B. V., Kanevskiy, M., Breen, A. L., Bergstedt, H., Romanovsky, V. E., & Hinkel, K. M. (2021). Geophysical observations of Taliks below drained Lake basins on the Arctic Coastal Plain of Alaska. Journal of Geophysical Research: Solid Earth, 126(3), e2020JB020889. https://doi.org/10.1029/2020JB020889
- Rao, S., Meunier, F., Ehosioke, S., Lesparre, N., Kemna, A., Nguyen, F., Garré, S., & Javaux, M. (2019). Impact of maize roots on soil–root electrical conductivity: A simulation study. Vadose Zone Journal, 18(1). https://doi.org/10.2136/vzj2019.04.0037
- Regberg, A., Singha, K., Tien, M., Picardal, F., Zheng, Q., Schieber, J., Roden, E., & Brantley, S. L. (2011). Electrical conductivity as an indicator of iron reduction rates in abiotic and biotic systems. Water Resources Research, 47(4). https://doi.org/10.1029/2010wr009551
- Rembert, F., Jougnot, D., Luquot, L., & Guérin, R. (2022). Interpreting self-potential signal during reactive transport: Application to calcite dissolution and precipitation. Water, 14(10), 1632. https://doi.org/10.3390/w14101632
- Rembert, F., Léger, M., Jougnot, D., & Luquot, L. (2023). Geoelectrical and hydro-chemical monitoring of karst formation at the laboratory scale. Hydrology and Earth System Sciences, 27(2), 417–430. https://doi.org/10.5194/hess-27-417-2023
- Revillini, D., Gehring, C. A., & Johnson, N. C. (2016). The role of locally adapted mycorrhizas and rhizobacteria in plant–soil feedback systems. Functional Ecology, 30(7), 1086–1098. https://doi.org/10.1111/1365-2435.12668
- Rey, D. M., Hinckley, E.-L. S., Walvoord, M. A., & Singha, K. (2021). Integrating observations and models to determine the effect of seasonally frozen ground on hydrologic partitioning in alpine hillslopes in the Colorado Rocky Mountains, USA. Hydrological Processes, 35(10), e14374. https://doi.org/10.1002/hyp.14374
- Rey, D. M., Walvoord, M. A., Minsley, B. J., Ebel, B. A., Voss, C. I., & Singha, K. (2020). Wildfire-initiated Talik development exceeds current thaw projections: Observations and models from Alaska's continuous permafrost zone. Geophysical Research Letters, 47(15), e2020GL087565. https://doi.org/10.1029/2020GL087565
- Richter, D. B., & Mobley, M. L. (2009). Monitoring earth's critical zone. Science, 326(5956), 1067–1068. https://doi.org/10.1126/science.1179117
- Riebe, C. S., Hahm, W. J., & Brantley, S. L. (2017). Controls on deep critical zone architecture: A historical review and four testable hypotheses: Four testable hypotheses about the deep critical zone. Earth Surface Processes and Landforms, 42(1), 128–156. https://doi.org/10.1002/esp.4052
- Robinson, J. L., Slater, L. D., & Schäfer, K. V. R. (2012). Evidence for spatial variability in hydraulic redistribution within an oak–pine forest from resistivity imaging. Journal of Hydrology, 430-431, 69–79. https://doi.org/10.1016/j.jhydrol.2012.02.002
- Rosenberry, D. O., Duque, C., & Lee, D. R. (2020). History and evolution of seepage meters for quantifying flow between groundwater and surface water: Part 1 – Freshwater settings. Earth-Science Reviews, 204, 103167. https://doi.org/10.1016/j.earscirev.2020.103167
- Sassen, D. S., Hubbard, S. S., Bea, S. A., Chen, J., Spycher, N., & Denham, M. E. (2012). Reactive facies: An approach for parameterizing field-scale reactive transport models using geophysical methods. Water Resources Research, 48(10). https://doi.org/10.1029/2011WR011047
10.1029/2011WR011047 Google Scholar
- Schmidt, L., & Rempe, D. (2020). Quantifying dynamic water storage in unsaturated bedrock with borehole nuclear magnetic resonance. Geophysical Research Letters, 47(22), e2020GL089600. https://doi.org/10.1029/2020GL089600
- Schwartz, N., & Furman, A. (2015). On the spectral induced polarization signature of soil organic matter. Geophysical Journal International, 200(1), 589–595. https://doi.org/10.1093/gji/ggu410
- Selker, J. S., Thévenaz, L., Huwald, H., Mallet, A., Luxemburg, W., van de Giesen, N., Stejskal, M., Zeman, J., Westhoff, M., & Parlange, M. B. (2006). Distributed fiber-optic temperature sensing for hydrologic systems. Water Resources Research, 42(12). https://doi.org/10.1029/2006WR005326
- Shanafield, M., Banks, E. W., Arkwright, J. W., & Hausner, M. B. (2018). Fiber-optic sensing for environmental applications: Where we have come from and what is possible. Water Resources Research, 54(11), 8552–8557. https://doi.org/10.1029/2018WR022768
- Simon, N., Bour, O., Faucheux, M., Lavenant, N., Le Lay, H., Fovet, O., Thomas, Z., & Longuevergne, L. (2021). Combining passive- and active-DTS measurements to locate and quantify groundwater discharge into streams. Hydrology and Earth System Sciences Discussions, 26, 1–36. https://doi.org/10.5194/hess-2021-293
- Simon, N., Bour, O., Lavenant, N., Porel, G., Nauleau, B., & Klepikova, M. (2023). Monitoring groundwater fluxes variations through active-DTS measurements. Journal of Hydrology, 622, 129755. https://doi.org/10.1016/j.jhydrol.2023.129755
- Singha, K., Day-Lewis, F. D., Johnson, T., & Slater, L. D. (2015). Advances in interpretation of subsurface processes with time-lapse electrical imaging. Hydrological Processes, 29(6), 1549–1576. https://doi.org/10.1002/hyp.10280
- Singha, K., Li, L., Day-Lewis, F. D., & Regberg, A. B. (2011). Quantifying solute transport processes: Are chemically “conservative” tracers electrically conservative? Geophysics, 76(1), F53–F63. https://doi.org/10.1190/1.3511356
- Singha, K., Pidlisecky, A., Day-Lewis, F. D., & Gooseff, M. N. (2008). Electrical characterization of non-Fickian transport in groundwater and hyporheic systems. Water Resources Research, 44, W00D07. https://doi.org/10.1029/2008WR007048
- Singley, J. G., Singha, K., Gooseff, M. N., González-Pinzón, R., Covino, T. P., Ward, A. S., Dorley, J., & Hinckley, E. L. S. (2022). Identification of hyporheic extent and functional zonation during seasonal streamflow recession by unsupervised clustering of time-lapse electrical resistivity models. Hydrological Processes, 36(10), e14713. https://doi.org/10.1002/hyp.14713
- Slater, L. D., Ntarlagiannis, D., Day-Lewis, F. D., Mwakanyamale, K., Versteeg, R. J., Ward, A., Strickland, C., Johnson, C. D., & Lane, J. W. (2010). Use of electrical imaging and distributed temperature sensing methods to characterize surface water–groundwater exchange regulating uranium transport at the Hanford 300 Area, Washington. Water Resources Research, 46(10), 2010WR009110. https://doi.org/10.1029/2010WR009110
10.1029/2010WR009110 Google Scholar
- Srivastava, R., & Yeh, T.-C. J. (1991). Analytical solutions for one-dimensional, transient infiltration toward the water table in homogeneous and layered soils. Water Resources Research, 27(5), 753–762. https://doi.org/10.1029/90WR02772
- St Clair, J., Moon, S., Holbrook, W. S., Perron, J. T., Riebe, C. S., Martel, S. J., Carr, B., Harman, C., Singha, K., & Richter, D. D. (2015). Geophysical imaging reveals topographic stress control of bedrock weathering. Science, 350(6260), 534–538. https://doi.org/10.1126/science.aab2210
- Stadler, A., Rudolph, S., Kupisch, M., Langensiepen, M., van der Kruk, J., & Ewert, F. (2015). Quantifying the effects of soil variability on crop growth using apparent soil electrical conductivity measurements. European Journal of Agronomy, 64, 8–20. https://doi.org/10.1016/j.eja.2014.12.004
- Steefel, C. I., & Maher, K. (2009). Fluid-rock interaction: A reactive transport approach. Reviews in Mineralogy and Geochemistry, 70(1), 485–532. https://doi.org/10.2138/rmg.2009.70.11
- Sullivan, P. L., Billings, S. A., Hirmas, D., Li, L., Zhang, X., Ziegler, S., Murenbeeld, K., Ajami, H., Guthrie, A., Singha, K., Giménez, D., Duro, A., Moreno, V., Flores, A., Cueva, A., Koop, Aronson, E. L., Barnard, H. R., Banwart, S. A., … Wen, H. (2022). Embracing the dynamic nature of soil structure: A paradigm illuminating the role of life in critical zones of the Anthropocene. Earth-Science Reviews, 225, 103873. https://doi.org/10.1016/j.earscirev.2021.103873
- Sullivan, P. L., Ma, L., West, N., Jin, L., Karwan, D. L., Noireaux, J., Steinhoefel, G., Gaines, K. P., Eissenstat, D. M., Gaillardet, J., Derry, L. A., Meek, K., Hynek, S., & Brantley, S. L. (2016). CZ-tope at Susquehanna Shale Hills CZO: Synthesizing multiple isotope proxies to elucidate critical zone processes across timescales in a temperate forested landscape. Chemical Geology, 445, 103–119. https://doi.org/10.1016/j.chemgeo.2016.05.012
- Tóth, J. (1999). Groundwater as a geologic agent: An overview of the causes, processes, and manifestations. Hydrogeology Journal, 7(1), 1–14. https://doi.org/10.1007/s100400050176
- Tyler, S. W., Selker, J. S., Bogaard, T., van de Giesen, N., & Aquilar-Lopez, J. (2022). Distributed fiber-optic hydrogeophysics. The Groundwater Project. https://doi.org/10.21083/978-1-77470-031-0
10.21083/978-1-77470-031-0 Google Scholar
- Uhlemann, S., Dafflon, B., Peterson, J., Ulrich, C., Shirley, I., Michail, S., & Hubbard, S. S. (2021). Geophysical monitoring shows that spatial heterogeneity in thermohydrological dynamics reshapes a transitional permafrost system. Geophysical Research Letters, 48(6), e2020GL091149. https://doi.org/10.1029/2020GL091149
- Uhlemann, S., Dafflon, B., Wainwright, H. M., Williams, K. H., Minsley, B., Zamudio, K., Carr, B., Falco, N., Ulrich, C., & Hubbard, S. (2022). Surface parameters and bedrock properties covary across a mountainous watershed: Insights from machine learning and geophysics. Science Advances, 8(12), eabj2479. https://doi.org/10.1126/sciadv.abj2479
- Uhlemann, S., Sorensen, J. P. R., House, A. R., Wilkinson, P. B., Roberts, C., Gooddy, D. C., Binley, A. M., & Chambers, J. E. (2016). Integrated time-lapse geoelectrical imaging of wetland hydrological processes. Water Resources Research, 52(3), 1607–1625. https://doi.org/10.1002/2015WR017932
- Valdes, D., Chen, N., Dumont, M., Marlin, C., Blanchoud, H., Guérin, R., Guillemoteau, J., Alliot, F., Nespoulet, R., Aubry, E., Rouelle, M., Fauchard, C., Gombert, P., & Ribstein, P. (2022). Transfer of water and contaminants in the chalk unsaturated zone – underground quarry of Saint-Martin-le-Nœud. Geological Society, London, Special Publications, 517, 413–434. https://doi.org/10.1144/SP517-2020-231
10.1144/SP517-2020-231 Google Scholar
- Valois, R., Cousquer, Y., Schmutz, M., Pryet, A., Delbart, C., & Dupuy, A. (2018). Characterizing stream-aquifer exchanges with self-potential measurements. Groundwater, 56(3), 437–450. https://doi.org/10.1111/gwat.12594
- Vanderborght, J., Huisman, J. A., Van Der Kruk, J., & Vereecken, H. (2015). Geophysical methods for field-scale imaging of root zone properties and processes. In S. H. Anderson & J. W. Hopmans (Eds.), SSSA special publications (pp. 247–282). American Society of Agronomy and Soil Science Society of America. https://doi.org/10.2136/sssaspecpub61.c12
- Voss, C. I. (2005). The future of hydrogeology. Hydrogeology Journal, 13(1), 1–6. https://doi.org/10.1007/s10040-005-0435-8
- Voytek, E. B., Barnard, H. R., Jougnot, D., & Singha, K. (2019). Transpiration- and precipitation-induced subsurface water flow observed using the self-potential method. Hydrological Processes, 33(13), 1784–1801. https://doi.org/10.1002/hyp.13453
- Voytek, E., Rushlow, C., Godsey, S., & Singha, K. (2016). Identifying hydrologic flowpaths on arctic hillslopes using electrical resistivity and self potential. Geophysics, 81(1), WA225–WA232.
- Wagner, F. M., Mollaret, C., Günther, T., Kemna, A., & Hauck, C. (2019). Quantitative imaging of water, ice and air in permafrost systems through petrophysical joint inversion of seismic refraction and electrical resistivity data. Geophysical Journal International, 219(3), 1866–1875. https://doi.org/10.1093/gji/ggz402
- Wainwright, H. M., Chen, J., Sassen, D. S., & Hubbard, S. S. (2014). Bayesian hierarchical approach and geophysical data sets for estimation of reactive facies over plume scales. Water Resources Research, 50(6), 4564–4584. https://doi.org/10.1002/2013WR013842
- Wang, H., Guan, H., Guyot, A., Simmons, C. T., & Lockington, D. A. (2016). Quantifying sapwood width for three Australian native species using electrical resistivity tomography. Ecohydrology, 9(1), 83–92. https://doi.org/10.1002/eco.1612
- Ward, A. S., Fitzgerald, M., Gooseff, M. N., Voltz, T., Binley, A., & Singha, K. (2012). Hydrologic and geomorphic controls on hyporheic exchange during baseflow recession in a headwater mountain stream. Water Resources Research, 48, W04513. https://doi.org/10.1029/2011WR011461
- Ward, A. S., Gooseff, M. N., & Singha, K. (2010). Imaging Hyporheic zone solute transport using electrical resistivity. Hydrological Processes, 24, 948–953. https://doi.org/10.1002/hyp.7672
- Watlet, A., Van Camp, M., Francis, O., Poulain, A., Rochez, G., Hallet, V., Quinif, Y., & Kaufmann, O. (2020). Gravity monitoring of underground flash flood events to study their impact on groundwater recharge and the distribution of karst voids. Water Resources Research, 56(4), e2019WR026673. https://doi.org/10.1029/2019WR026673
- Wehrer, M., Binley, A., & Slater, L. D. (2016). Characterization of reactive transport by 3-D electrical resistivity tomography (ERT) under unsaturated conditions. Water Resources Research, 52(10), 8295–8316. https://doi.org/10.1002/2016wr019300
- Weigand, M., & Kemna, A. (2017). Multi-frequency electrical impedance tomography as a non-invasive tool to characterize and monitor crop root systems. Biogeosciences, 14(4), 921–939. https://doi.org/10.5194/bg-14-921-2017
- Weigand, M., & Kemna, A. (2019). Imaging and functional characterization of crop root systems using spectroscopic electrical impedance measurements. Plant and Soil, 435(1), 201–224. https://doi.org/10.1007/s11104-018-3867-3
- West, N., Kirby, E., Nyblade, A. A., & Brantley, S. L. (2019). Climate preconditions the critical zone: Elucidating the role of subsurface fractures in the evolution of asymmetric topography. Earth and Planetary Science Letters, 513, 197–205. https://doi.org/10.1016/j.epsl.2019.01.039
- Westhoff, M. C., Savenije, H. H. G., Luxemburg, W. M. J., Stelling, G. S., van de Giesen, N. C., Selker, J. S., Pfister, L., & Uhlenbrook, S. (2007). A distributed stream temperature model using high resolution temperature observations. Hydrology and Earth System Sciences, 11(4), 1469–1480. https://doi.org/10.5194/hess-11-1469-2007
- White, A. M., Gardner, W. P., Borsa, A. A., Argus, D. F., & Martens, H. R. (2022). A review of GNSS/GPS in hydrogeodesy: Hydrologic loading applications and their implications for water resource research. Water Resources Research, 58(7), e2022WR032078. https://doi.org/10.1029/2022WR032078
- White, T., Brantley, S., Banwart, S., Chorover, J., Dietrich, W., Derry, L., Lohse, K., Anderson, S., Aufdendkampe, A., Bales, R., Kumar, P., Richter, D., & McDowell, B. (2015). Chapter 2 – The role of critical zone observatories in critical zone science. In J. R. Giardino & C. Houser (Eds.), Developments in earth surface processes (Vol. 19, pp. 15–78). Elsevier. https://doi.org/10.1016/B978-0-444-63369-9.00002-1
10.1016/B978-0-444-63369-9.00002-1 Google Scholar
- Whiteley, J. S., Chambers, J. E., Uhlemann, S., Wilkinson, P. B., & Kendall, J. M. (2019). Geophysical monitoring of moisture-induced landslides: A review. Reviews of Geophysics, 57(1), 106–145. https://doi.org/10.1029/2018RG000603
- Williams, K. H., Kemna, A., Wilkins, M. J., Druhan, J., Arntzen, E., N’Guessan, A. L., Long, P. E., Hubbard, S. S., & Banfield, J. F. (2009). Geophysical monitoring of coupled microbial and geochemical processes during stimulated subsurface bioremediation. Environmental Science & Technology, 43(17), 6717–6723. https://doi.org/10.1021/es900855j
- Wlostowski, A. N., Molotch, N., Anderson, S. P., Brantley, S. L., Chorover, J., Dralle, D., Kumar, P., Li, L., Lohse, K. A., Mallard, J. M., McIntosh, J. C., Murphy, S. F., Parrish, E., Safeeq, M., Seyfried, M., Shi, Y., & Harman, C. (2021). Signatures of hydrologic function across the critical zone observatory network. Water Resources Research, 57(3), e2019WR026635. https://doi.org/10.1029/2019WR026635
- Wondzell, S. M. (2006). Effect of morphology and discharge on hyporheic exchange flows in two small streams in the Cascade Mountains of Oregon, USA. Hydrological Processes, 20(2), 267–287. https://doi.org/10.1002/hyp.5902
- Wondzell, S. M. (2011). The role of the hyporheic zone across stream networks. Hydrological Processes, 25(22), 3525–3532. https://doi.org/10.1002/hyp.8119
- Wondzell, S. M., & Swanson, F. J. (1999). Floods, channel change, and the hyporheic zone. Water Resources Research, 35, 555–567.
- Wu, Y., Ajo-Franklin, J. B., Spycher, N., Hubbard, S. S., Zhang, G., Williams, K. H., Taylor, J., Fujita, Y., & Smith, R. (2011). Geophysical monitoring and reactive transport modeling of ureolytically-driven calcium carbonate precipitation. Geochemical Transactions, 12(1), 7. https://doi.org/10.1186/1467-4866-12-7