Nanomaterials for Agricultural and Ecological Defense Applications: Active Agents and Sensors
Pramila Sharma
Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
Contribution: Data curation, Formal analysis, Methodology, Writing - original draft
Search for more papers by this authorSanjay Kumar
School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, India
Contribution: Data curation, Formal analysis, Writing - original draft
Search for more papers by this authorAxita Patel
Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
Contribution: Data curation, Methodology, Writing - original draft
Search for more papers by this authorCorresponding Author
Bhaskar Datta
Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
Correspondence
Bhaskar Datta, Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355 India.
Email: [email protected]
Contribution: Supervision, Visualization, Writing - review & editing
Search for more papers by this authorRobert K. DeLong
Nanotechnology Innovation Center, Kansas State University, Kansas, USA
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorPramila Sharma
Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
Contribution: Data curation, Formal analysis, Methodology, Writing - original draft
Search for more papers by this authorSanjay Kumar
School of Biosciences and Bioengineering, D. Y. Patil International University, Pune, India
Contribution: Data curation, Formal analysis, Writing - original draft
Search for more papers by this authorAxita Patel
Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
Contribution: Data curation, Methodology, Writing - original draft
Search for more papers by this authorCorresponding Author
Bhaskar Datta
Department of Biological Engineering, Indian Institute of Technology, Gandhinagar, Gujarat, India
Department of Chemistry, Indian Institute of Technology, Gandhinagar, Gujarat, India
Correspondence
Bhaskar Datta, Department of Chemistry, Indian Institute of Technology Gandhinagar, Palaj, Gandhinagar 382355 India.
Email: [email protected]
Contribution: Supervision, Visualization, Writing - review & editing
Search for more papers by this authorRobert K. DeLong
Nanotechnology Innovation Center, Kansas State University, Kansas, USA
Contribution: Supervision, Writing - review & editing
Search for more papers by this authorPramila Sharma and Sanjay Kumar contributed equally to this study.
Edited by: Nancy Monteiro-Riviere, Associate Editor and Gregory Lanza, Co-Editor-in-Chief
Funding information: Department of Science and Technology (DST) of Govt. of India, Grant/Award Number: 6349; Ministry of Human Resources and Development (MHRD)
Abstract
The world we live in today is overpopulated with an unprecedented number of people competing for fewer and fewer precious resources. The struggle to efficiently steward and manage these resources is a global problem in need of concrete and urgent solutions. Nanomaterials have driven innovation in diverse industrial sectors including military, aviation, electronic, and medical among others. Nanoscale materials possess unique surfaces and exquisite opto-electronic properties that make them uniquely suited to environmental, biological, and ecological defense applications. A tremendous upsurge of research activity in these areas is evident from the exponential increase in publications worldwide. Here we review recent applications of nanomaterials toward soil health and management, abiotic and biotic stress management, plant defense, delivery of the RNA Interference (RNAi), plant growth, manufacture of agro-products, and ecological investigations related to farming. For example, nanomaterial constructs have been used to counter environmental stresses and in plant defense and disease diagnosis. Nanosensor chemistries have been developed to monitor water quality and measure specific pollutant levels. Specific nanomaterials such as silver, iron oxide, and zinc oxide proffer protection to plants from pathogens. This review describes progress in nanomaterial-based agricultural and ecological defense and seeks to identify factors that would enable their wider commercialization and deployment.
This article is categorized under:
- Diagnostic Tools > Biosensing
- Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials
- Diagnostic Tools > Diagnostic Nanodevices
Graphical Abstract
Applications of nanomaterials.
CONFLICT OF INTEREST
The authors have declared no conflicts of interest for this article.
Open Research
DATA AVAILABILITY STATEMENT
Data sharing is not applicable to this article as no new data were created or analyzed in this study.
REFERENCES
- Afsharinejad, A., Davy, A., Jennings, B., & Brennan, C. (2016). Performance analysis of plant monitoring nanosensor networks at THz frequencies. IEEE Internet of Things Journal, 3, 59–69.
- Anjali, C. H., Sudheer Khan, S., Margulis-Goshen, K., Magdassi, S., Mukherjee, A., & Chandrasekaran, N. (2010). Formulation of water-dispersible nanopermethrin for larvicidal applications. Ecotoxicology and Environmental Safety, 73, 1932–1936.
- Arora, S., Sharma, P., Kumar, S., Nayan, R., Khanna, P. K., & Zaidi, M. G. H. (2012). Gold-nanoparticle induced enhancement in growth and seed yield of Brassica juncea. Plant Growth Regulation, 66, 303–310.
- Barzegar, G., Jorfi, S., Soltani, R. D. C., Ahmadi, M., Saeedi, R., Abtahi, M., Ramavandi, B., & Baboli, Z. (2017). Enhanced Sono-Fenton-like oxidation of PAH-contaminated soil using Nano-sized magnetite as catalyst: Optimization with response surface methodology. Soil and Sediment Contamination: An International Journal, 26, 538–557.
- Baulcombe, D. (2004). RNA silencing in plants. Nature, 431, 356–363.
- Bokare, V., Murugesan, K., Kim, Y. M., Jeon, J. R., Kim, E. J., & Chang, Y. S. (2010). Degradation of triclosan by an integrated nano-bio redox process. Bioresource Technology, 101, 6354–6360.
- Bombo, A. B., Pereira, A. E. S., Lusa, M. G., de Medeiros, O. E., de Oliveira, J. L., Campos, E. V. R., de Jesus, M. B., Oliveira, H. C., Fraceto, L. F., & Mayer, J. L. S. (2019). A mechanistic view of interactions of a nanoherbicide with target organism. Journal of Agricultural and Food Chemistry, 67, 4453–4462.
- Bouguerra, S., Gavina, A., Ksibi, M., da Graca Rasteiro, M., Rocha-Santos, T., & Pereira, R. (2016). Ecotoxicity of titanium silicon oxide (TiSiO4) nanomaterial for terrestrial plants and soil invertebrate species. Ecotoxicology and Environmental Safety, 129, 291–301.
- Brandeburová, P., Bírošová, L., Vojs, M., Kromka, A., Gál, M., Tichý, J., Híveš, J., & Mackuľak, T. (2017). The influence of selected nanomaterials on microorganisms. Monatshefte für Chemie—Chemical Monthly, 148(3), 525–530.
- Cecchin, I., Reddy, K. R., Thomé, A., Tessaro, E. F., & Schnaid, F. (2017). Nanobioremediation: Integration of nanoparticles and bioremediation for sustainable remediation of chlorinated organic contaminants in soils. International Biodeterioration and Biodegradation, 119, 419–428.
- Chakravarty, D., Erande, M. B., & Late, D. J. (2015). Graphene quantum dots as enhanced plant growth regulators: Effects on coriander and garlic plants. Journal of the Science of Food and Agriculture, 95, 2772–2778.
- Chaw Jiang, L., Basri, M., Omar, D., Abdul Rahman, M. B., Salleh, A. B., Raja Abdul Rahman, R. N. Z., & Selamat, A. (2012). Green nano-emulsion intervention for water-soluble glyphosate isopropylamine (IPA) formulations in controlling Eleusine indica (E. indica). Pesticide Biochemistry and Physiology, 102, 19–29.
- Chen, G., Qiu, J., Liu, Y., Jiang, R., Cai, S., Liu, Y., Zhu, F., Zeng, F., Luan, T., & Ouyang, G. (2015). Carbon nanotubes act as contaminant carriers and translocate within plants. Scientific Reports, 5, 15682.
- Chouhan, R. S., Vinayaka, A. C., & Thakur, M. S. (2010). Thiol-stabilized luminescent CdTe quantum dot as biological fluorescent probe for sensitive detection of methyl parathion by a fluoroimmunochromatographic technique. Analytical and Bioanalytical Chemistry, 397, 1467–1475.
- Colman, B. P., Arnaout, C. L., Anciaux, S., Gunsch, C. K., Hochella, M. F., Jr., Kim, B., Lowry, G. V., McGill, B. M., Reinsch, B. C., Richardson, C. J., Unrine, J. M., Wright, J. P., Yin, L., & Bernhardt, E. S. (2013). Low concentrations of silver nanoparticles in biosolids cause adverse ecosystem responses under realistic field scenario. PLoS One, 8(2), e57189.
- Das, S., Debnath, N., Cui, Y., Unrine, J., & Palli, S. R. (2017). Chitosan, carbon quantum dot, and silica nanoparticle mediated dsRNA delivery for gene silencing in Aedes aegypti: A comparative analysis in three diverse aphid species. Insect Molecular Biology, 26, 356–368.
- De La Torre-Roche, R., Hawthorne, J., Deng, Y., Xing, B., Cai, W., Newman, L. A., Wang, C., Ma, X., & White, J. C. (2012). Fullerene-enhanced accumulation of p,p′-DDE in agricultural crop species. Environmental Science and Technology, 46, 9315–9323.
- Devi, P. V., Duraimurugan, P., & Chandrika, K. (2019). Bacillus thuringiensis-based nanopesticides for crop protection. In Nano-biopesticides today and future perspectives (pp. 249–260). Academic Press.
10.1016/B978-0-12-815829-6.00010-3 Google Scholar
- Dubey, A., & Mailapalli, D. R. (2016). Nanofertilisers, nanopesticides, nanosensors of pest and nanotoxicity in agriculture. In E. Lichtfouse (Ed.), Sustainable agriculture reviews (Vol. 19, pp. 307–330). Springer.
10.1007/978-3-319-26777-7_7 Google Scholar
- Duhan, J. S., Kumar, R., Kumar, N., Kaur, P., Nehra, K., & Duhan, S. (2017). Nanotechnology: The new perspective in precision agriculture. Biotechnology Reports, 15, 11–23.
- El-Beyrouthya, M., & El Azzi, D. (2014). Nanotechnologies: Novel solutions for sustainable agriculture. Advances in Crop Science and Technology, 2, e118.
10.4172/2329-8863.1000e118 Google Scholar
- Eldredge, E. P., Shock, C. C., & Stieber, T. D. (1993). Calibration of granular matrix sensors for irrigation management. Agronomy Journal, 85, 1228–1232.
- El-Temsah, Y. S., & Joner, E. J. (2012). Ecotoxicological effects on earthwords of fresh and aged nano-sized zero-valent iron (nZVI) in soil. Chemosphere, 89, 76–82.
- Fang, A. J., Chen, H. Y., Li, H. T., Liu, M. L., Zhang, Y. Y., & Yao, S. Z. (2017). Glutathione regulation-based dual-functional upconversion sensing-platform for acetylcholinesterase activity and cadmium ions. Biosensors and Bioelectronics, 87, 545–551.
- Fraceto, L. F., Grillo, R., de Medeiros, G. A., Scognamiglio, V., Rea, G., & Bartolucci, C. (2016). Nanotechnology in agriculture: Which innovation potential does it have. Frontiers in Environmental Science, 4, 20.
- Ganeshkumar, R., Sopiha, K. V., Wu, P., Cheah, C. W., & Zhao, R. (2016). Ferroelectric KNbO3 nanofibers: Synthesis, characterization and their application as a humidity nanosensor. Nanotechnology, 27, 395607.
- Ge, S., Lu, J., Ge, L., Yan, M., & Yu, J. (2011). Development of a novel deltamethrin sensor based on molecularly imprinted silica nanospheres embedded CdTe quantum dots. Spectrochimica Acta—Part A: Molecular and Biomolecular Spectroscopy, 79, 1704–1709.
- Ghorbanpour, M., & Fahimirad, S. (2017). Plant nanobionics: A novel approach to overcome environmental challenges. In M. Ghorbanpour & A. Varma (Eds.), Medicinal plants and environmental challenges (pp. 247–257). Springer.
10.1007/978-3-319-68717-9_14 Google Scholar
- Ghosh, S. K. B., Hunter, W. B., Park, A. L., & Gundersen-Rindal, D. E. (2017). Double strand RNA delivery system forplant-sap-feeding insects. PLoS One, 12, e0171861.
- Giannousi, K., Avramidis, I., & Dendrinou-Samara, C. (2013). Synthesis, characterization and evaluation of copper based nanoparticles as agrochemicals against Phytophthora infestans. RSC Advances, 3(44), 21743–21752.
- Giraldo, J. P., Landry, M. P., Faltermeier, S. M., McNicholas, T. P., Iverson, N. M., Boghossian, A. A., Reuel, N. F., Hilmer, A. J., Sen, F., & Brew, J. A. (2014). Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nature Materials, 13, 400–408.
- Gogos, A., Knauer, K., & Bucheli, T. D. (2012). Nanomaterials in plant protection and fertilization: Current state, foreseen applications, and research priorities. Journal of Agricultural and Food Chemistry, 60, 9781–9792.
- Gohari, G., Mohammadi, A., Akbari, A., Panahirad, S., Dadpour, M. R., Fotopoulos, V., & Kimura, S. (2020). Titanium dioxide nanoparticles (TiO2 NPs) promote growth and ameliorate salinity stress effects on essential oil profile and biochemical attributes of Dracocephalum moldavica. Scientific Reports, 10, 912.
- Gong, X., Huang, D., Liu, Y., Peng, Z., Zeng, G., Xu, P., Cheng, M., Wang, R., & Wan, J. (2018). Remediation of contaminated soils by biotechnology with nanomaterials: Biobehavior, applications, and perspectives. Critical Reviews in Biotechnology, 38, 455–468.
- Guan, H., Chi, D., Yu, J., & Li, X. (2008). A novel photodegradable insecticide: Preparation, characterization and properties evaluation of nano-Imidacloprid. Pesticide Biochemistry and Physiology, 92, 83–91.
- Han, Y. S., Lee, S. Y., Yang, J. H., Soo Hwang, H., & Park, I. (2010). Paraquat release control using intercalated montmorillonite compounds. Journal of Physics and Chemistry of Solids, 71, 460–463.
- Hong, J., Wang, L., Sun, Y., Zhao, L., Niu, G., Tan, W., Rico, C. M., Peralta-Videa, J. R., & Gardea-Torresdey, J. L. (2016). Foliar applied nanoscale and microscale CeO2 and CuO alter cucumber (Cucumis sativus) fruit quality. The Science of the Total Environment, 563–564, 904–911.
- Huang, Y., & Wang, L. (2016). Experimental studies on nanomaterials for soil improvement: A review. Environmental Earth Sciences, 75, 5118–5118.
- Imada, K., Sakai, S., Kajihara, H., Tanaka, S., & Ito, S. (2016). Magnesium oxide nanoparticles induce systemic resistance in tomato against bacterial wilt disease. Plant Pathology, 65, 551–560.
- Jenne, M., Kambham, M., Tollamadugu, N. V. K. V. P., Karanam, H. P., Tirupati, M. K., Balam, R. R., Shameer, S., & Yagireddy, M. (2018). The use of slow releasing nanoparticle encapsulated Azadirachtin formulations for the management of Caryedon serratus O. (groundnut bruchid). IET Nanobiotechnology, 12, 963–967.
- Kaveh, R., Li, Y. S., Ranjbar, S., Tehrani, R., Brueck, C. L., & Van Aken, B. (2013). Changes in Arabidopsis thaliana gene expression in response to silver nanoparticles and silver ions. Environmental Science and Technology, 47, 10637–10644.
- Khan, M. N., Mobin, M., Abbas, Z. K., AlMutairi, K. A., & Siddiqui, Z. H. (2017). Role of nanomaterials in plants under challenging environments. Plant Physiology and Biochemistry, 110, 194–209.
- Khodakovskaya, M. V., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2012). Carbon nanotubes induce growth enhancement of tobacco cells. ACS Nano, 6, 2128–2135.
- Kim, S. W., Jung, J. H., Lamsal, K., Kim, Y. S., Min, J. S., & Lee, Y. S. (2012). Antifungal effects of silver nanoparticles (AgNPs) against various plant pathogenic fungi. Mycobiology, 40, 53–58.
- Klitzke, S., Metreveli, G., Peters, A., Schaumann, G. E., & Lang, F. (2015). The fate of silver nanoparticles in soil solution—Sorption of solutes and aggregation. The Science of the Total Environment, 535, 54–60.
- Kottegoda, N., Munaweera, I., Madusanka, N., & Karunaratne, V. (2011). A green slow-release fertilizer composition based on urea-modified hydroxyapatite nanoparticles encapsulated wood. Current Science, 101, 73–78.
- Kumar, D. R., Kumar, P. S., Gandhi, M. R., Al-Dhabi, N. A., Paulraj, M. G., & Ignacimuthu, S. (2016). Delivery of chitosan/dsRNA nanoparticles for silencing of wing development vestigial (vg) gene in Aedes aegypti mosquitoes. International Journal of Biological Macromolecules, 86, 89–95.
- Kumar, R. S., Shiny, P., Anjali, C., Jerobin, J., Goshen, K. M., Magdassi, S., Mukherjee, A., & Chandrasekaran, N. (2013). Distinctive effects of nano-sized permethrin in the environment. Environmental Science and Pollution Research, 20, 2593–2602.
- Kumar, S., Bhanjana, G., Sharma, A., Sidhu, M. C., & Dilbaghi, N. (2014). Synthesis, characterization and on field evaluation of pesticide loaded sodium alginate nanoparticles. Carbohydrate Polymers, 101, 1061–1067.
- Kwak, S. Y., Giraldo, J. P., Wong, M. H., Koman, V. B., Lew, T. T. S., Ell, J., Weidman, M. C., Sinclair, R. M., Landry, M. P., & Tisdale, W. A. (2017). A nanobionic light-emitting plant. Nano Letters, 17, 7951–7961.
- Le, V. T., Bach, L. G., Pham, T. T., Le, N. T. T., Ngoc, U. T. P., Tran, D.-H. N., & Nguyen, D. H. (2019). Synthesis and antifungal activity of chitosan-silver nanocomposite synergize fungicide against Phytophthora capsici. Journal of Macromolecular Science, Part A, 56(6), 522–528.
- Liang, S. X., Jin, Y., Liu, W., Li, X., Shen, S. G., & Ding, L. (2017). Feasibility of Pb phytoextraction using nano-materials assisted ryegrass: Results of a one-year field-scale experiment. Journal of Environmental Management, 190, 170–175.
- Li-Byarlay, H., Li, Y., Stroud, H., Feng, S., Newman, T. C., Kaneda, M., Hou, K. K., Worley, K. C., Elsik, C. G., & Wickline, S. A. (2013). RNA interference knockdown of DNA methyl-transferase 3 affects gene alternative splicing in the honey bee. Proceedings of the National Academy of Sciences of the United States of America, 110, 12750–12755.
- Lim, C. J., Basri, M., Omar, D., Abdul Rahman, M. B., Salleh, A. B., & Raja Abdul Rahman, R. N. Z. (2012). Green nanoemulsion-laden glyphosate isopropylamine formulation in suppressing creeping foxglove (A. gangetica), slender button weed (D. ocimifolia) and buffalo grass (P. conjugatum). Pest Management Science, 69, 104–111.
- Lin, H. Y., Huang, C. H., Lu, S. H., Kuo, I. T., & Chau, L. K. (2014). Direct detection of orchid viruses using nanorod-based fiber optic particle plasmon resonance immunosensor. Biosensors and Bioelectronics, 51, 371–378.
- Liu, Y., Tong, Z., & Prud'homme, R. K. (2008). Stabilized polymeric nanoparticles for controlled and efficient release of bifenthrin. Pest Management Science, 64, 808–812.
- Malandrakis, A. A., Kavroulakis, N., & Chrysikopoulos, C. V. (2019). Use of copper, silver and zinc nanoparticles against foliar and soil-borne plant pathogens. Science of the Total Environment, 670, 292–299.
- Maruyama, C. R., Guilger, M., Pascoli, M., Bileshy-Jose, N., Abhilash, P., Fraceto, L. F., & de Lima, R. (2016). Nanoparticles based on chitosan as carriers for the combined herbicides imazapic and imazapyr. Scientific Reports, 6, 19768.
- Mitter, N., Worrall, E. A., Robinson, K. E., Li, P., Jain, R. G., Taochy, C., Fletcher, S. J., Carroll, B. J., Lu, G. Q., & Xu, Z. P. (2017). Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nature Plants, 3, 16207.
- Mitter, N. W., Worrall, E. A., Robinson, K. E., Xu, Z. P., & Carroll, B. J. (2017). Induction of virus resistance by exogenous application of double-stranded RNA. Current Opinion in Virology, 26, 49–55.
- Muller, J., Prozeller, D., Ghazaryan, A., Kokkinopoulou, M., Mailander, V., Morsbach, S., & Landfester, K. (2018). Beyond the protein corona—Lipids matter for biological response of nanocarriers. Acta Biomaterialia, 71, 420–431.
- Nair, P. M. G., & Chung, I. M. (2014). Cell cycle and mismatch repair genes as potential biomarkers in Arabidopsis thaliana seedlings exposed to silver nanoparticles. Bulletin of Environmental Contamination and Toxicology, 92, 719–725.
- Nyberg, L., Turco, R. F., & Nies, L. (2008). Assessing the impact of nanomaterials on anaerobic microbial communities. Environmental Science & Technology, 42, 1938–1943.
- Oerke, E. C. (2006). Crop losses to pests. The Journal of Agricultural Science, 144, 31–43.
- Pallavi, Mehta, C. M., Srivastava, R., Arora, S., & Sharma, A. K. (2016). Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech, 6, 254.
- Pandey, K., Lahiani, M. H., Hicks, V. K., Hudson, M. K., Green, M. J., Khodakovskaya, M. V., De Silva, K., Biris, A. S., Dervishi, E., & Villagarcia, H. (2018). Effects of carbon-based nanomaterials on seed germination, biomass accumulation and salt stress response of bioenergy crops. PLoS One, 13, e0202274.
- Pankaj, Shakil, N. A., Kumar, J., Singh, M. K., & Singh, K. (2012). Bioefficacy evaluation of controlled release formulations based on amphiphilic nano-polymer of carbofuran against Meloidogyne incognita infecting tomato. Journal of Environmental Science and Health, Part B, 47, 520–528.
- Pereira, A. E. S., Grillo, R., Mello, N. F. S., Rosa, A. H., & Fraceto, L. F. (2014). Application of poly(epsilon-caprolactone) nanoparticles containing atrazine herbicide as an alternative technique to control weeds and reduce damage to the environment. Journal of Hazardous Materials, 268, 207–215.
- Petosa, A. R., Rajput, F., Selvam, O., Öhl, C., & Tufenkji, N. (2017). Assessing the transport potential of polymeric nanocapsules developed for crop protection. Water Research, 111, 10–17.
- Phenrat, T., Kim, H.-J., Fagerlund, F., Illangasekare, T., Tilton, R. D., & Lowry, G. V. (2009). Particle size distribution, concentration, and magnetic attraction affect transport of polymer-modified Fe0 nanoparticles in sand columns. Environmental Science & Technology, 43, 5079–5085.
- Pradhan, S., Roy, I., Lodh, G., Patra, P., Choudhury, S. R., Samanta, A., & Goswami, A. (2013). Entomotoxicity and biosafety assessment of PEGylated acephate nanoparticles: A biologically safe alternative to neurotoxic pesticides. Journal of Environmental Science and Health, Part B, 48, 559–569.
- Priester, J. H., Ge, Y., Mielke, R. E., Horst, A. M., Moritz, S. C., Espinosa, K., Gelb, J., Walker, S. L., Nisbet, R. M., An, Y.-J., Schimel, J. P., Palmer, R. G., Hernandez-Viezcas, J. A., Zhao, L., Gardea-Torresdey, J. L., & Holden, P. A. (2012). Soybean susceptibility to manufactured nanomaterials with evidence for food quality and soil fertility interruption. Proceedings of the National Academy of Sciences, 109(37), E2451–E2456.
- Rad, F., Mohsenifar, A., Tabatabaei, M., Safarnejad, M. R., Shahryari, F., Safarpour, H., Foroutan, A., Mardi, M., Davoudi, D., & Fotokian, M. (2012). Detection of Candidatus Phytoplasma aurantifolia with a quantum dots fret-based biosensor. Journal of Plant Pathology, 94, 525–534.
- Rai, V., Acharya, S., & Dey, N. (2012). Implications of nanobiosensors in agriculture. Journal of Biomaterials and Nanobiotechnology, 3, 315–324.
- Razmi, A., Golestanipour, A., Nikkhah, M., Bagheri, A., Shamsbakhsh, M., & Malekzadeh-Shafaroudi, S. (2019). Localized surface plasmon resonance biosensing of tomato yellow leaf curl virus. Journal of Virological Methods, 267, 1–7.
- Robinson, K. E., Worrall, E. A., & Mitter, N. (2014). Double stranded RNA expression and its topical application for non-transgenic resistance to plant viruses. Journal of Plant Biochemistry and Biotechnology, 23, 231–237.
- Sabna, V., Thampi, S. G., & Chandrakaran, S. (2016). Adsorption of crystal violet onto functionalised multi-walled carbon nanotubes: Equilibrium and kinetic studies. Ecotoxicology and Environmental Safety, 134, 390–397.
- Saleh, N., Sirk, K., Liu, Y., Phenrat, T., Dufour, B., Matyjasweski, K., Tilton, R. D., & Lowry, G. V. (2006). Surface modifications enhance nanoiron transport and NAPL targeting in saturated porous media. Environmental Engineering Science, 24, 45–57.
- San Miguel, K., & Scott, J. G. (2016). The next generation of insecticides: DsRNA is stable as a foliar-applied insecticide. Pest Management Science, 72, 801–809.
- Servin, A. D., & White, J. C. (2016). Nanotechnology in agriculture: Next steps for understanding engineered nanoparticle exposure and risk. NanoImpact, 1, 9–12.
- Shenashen, M., Derbalah, A., Hamza, A., Mohamed, A., & El Safty, S. (2017). Antifungal activity of fabricated mesoporous alumina nanoparticles against root rot disease of tomato caused by Fusarium oxysporium. Pest Management Science, 73(6), 1121–1126.
- Siddiqui, M. H., & Al-Whaibi, M. H. (2014). Role of nano-SiO2 in germination of tomato (Lycopersicum esculentum seeds Mill). Saudi Journal of Biological Sciences, 21, 13–17.
- Singh, D., & Kumar, A. (2019). Assessment of toxic interaction of nano zinc oxide and nano copper oxide on germination of Raphanus sativus seeds. Environmental Monitoring and Assessment, 191, 703.
- Singh, J., & Lee, B. K. (2016). Influence of nano-TiO2 particles on the bioaccumulation of Cd in soybean plants (Glycine max): A possible mechanism for the removal of Cd from the contaminated soil. Journal of Environmental Management, 170, 88–96.
- Singh, R., Manickam, N., Mudiam, M. K. R., Murthy, R. C., & Misra, V. (2013). An integrated (nano-bio) technique for degradation of γ-HCH contaminated soil. Journal of Hazardous Materials, 258–259, 35–41.
- Song, M.-R., Cui, S.-M., Gao, F., Liu, Y.-R., Fan, C.-L., Lei, T.-Q., & Diu, D.-C. (2012). Dispersible silica nanoparticles as carrier for enhanced bioactivity of chlorfenapyr. Journal of Pesticide Science, 37, 258–260.
- Stadler, T., Buteler, M., & Weaver, D. (2010). Novel use of nanostructured alumina as an insecticide. Pest Management Science, 66, 577–579.
- Tan, D., Yuan, P., Annabi-Bergaya, F., Dong, F., Liu, D., & He, H. (2015). A comparative study of tubular hallyosite and platy kaolinite as carriers for the loading and release of the herbicide amitrole. Applied Clay Science, 114, 190–196.
- Tatsi, K., Shaw, B. J., Hutchinson, T. H., & Handy, R. D. (2018). Copper accumulation and toxicity in earthworms exposed to CuO nanomaterials: Effects of particle coating and soil ageing. Ecotoxicology and Environmental Safety, 166, 462–473.
- Tenllado, F. (2004). RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Research, 102, 85–96.
- Thairu, M., Skidmore, I., Bansal, R., Nováková, E., Hansen, T., Li-Byarlay, H., Wickline, S., & Hansen, A. (2015). Efficacy of RNA interference knockdown using aerosolized short interfering RNAs bound to nanoparticles. ACS Applied Materials & Interfaces, 7, 19530–19535.
- Tong, Z. H., Bischoff, M., Nies, L., Applegate, B., & Turco, R. F. (2007). Impact of fullerene (C60) on a soil microbial community. Environmental Science & Technology, 41, 2985–2991.
- Torabian, S., Zahedi, M., & Khoshgoftar, A. H. (2016). Effects of foliar spray of nano-particles of FeSO4 on the growth and ion content of sunflower under saline condition. Journal of Plant Nutrition, 40, 615–623.
- Tripathi, D. K., Singh, S., Singh, V. P., Prasad, S. M., Dubey, N. K., & Chauhan, D. K. (2017). Silicon nanoparticles more effectively alleviated UV-B stress than silicon in wheat (Triticum aestivum) seedlings. Plant Physiology and Biochemistry, 110, 70–81.
- Vanti, G. L., Nargund, V. B., Basavesha, K. N., Vanarchi, R., Kurjogi, M., Mulla, S. I., Tubaki, S., & Patil, R. R. (2019). Synthesis of Gossypium hirsutum-derived silver nanoparticles and their antibacterial efficacy against plant pathogens. Applied Organometallic Chemistry, 33, e4630.
- Viirlaid, E., Riiberg, R., Maeorg, U., & Rinken, T. (2015). Glyphosate attachment on aminoactivated carriers for sample stabilization and concentration. Agronomy Research, 13, 1152–1159.
- Wang, A., Zheng, Y., & Peng, F. (2014). Thickness-controllable silica coating of CdTe QDs by reverse microemulsion method for the application in the growth of rice. Journal of Spectroscopy, 2014, 1–5.
- Wang, Z., Wei, F., Liu, S. Y., Xu, Q., Huang, J. Y., Dong, X. Y., Yu, J. H., Yang, Q., Zhao, Y. D., & Chen, H. (2010). Electrocatalytic oxidation of phytohormone salicylic acid at copper nanoparticles-modified gold electrode and its detection in oilseed rape infected with fungal pathogen Sclerotinia sclerotiorum. Talanta, 80, 1277–1281.
- Wan-Jun, S., Wei-Wei, S., Sai-Yan, G., Yi-Tong, L., Yong-Song, C., & Pei, Z. (2010). Effects of nanopesticide chlorfenapyr on mice. Toxicological & Environmental Chemistry, 92, 1901–1907.
- Wanyika, H., Gatebe, E., Kioni, P., Tang, Z., & Gao, Y. (2012). Mesoporous silica nanoparticles carrier for urea: Potential applications in agrochemical delivery systems. Journal of Nanoscience and Nanotechnology, 12, 2221–2228.
- Wong, M. H., Giraldo, J. P., Kwak, S.-Y., Koman, V. B., Sinclair, R., Lew, T. T. S., Bisker, G., Liu, P., & Strano, M. S. (2017). Nitroaromatic detection and infrared communication from wild-type plants using plant nanobionics. Nature Materials, 16, 264–272.
- Worrall, E., Hamid, A., Mody, K., Mitter, N., & Pappu, H. (2018). Nanotechnology for plant disease management. Agronomy, 8, 285.
- Wu, J., Xie, Y., Fang, Z., Cheng, W., & Tsang, P. E. (2016). Effects of Ni/Fe bimetallic nanoparticles on phytotoxicity and translocation of polybrominated diphenyl ethers in contaminated soil. Chemosphere, 162, 235–242.
- Yang, F., Hong, F., You, W., Liu, C., Gao, F., Wu, C., & Yang, P. (2006). Influence of nano-anatase TiO2 on the nitrogen metabolism of growing spinach. Biological Trace Element Research, 110, 179–190.
- Yang, F.-L., Li, X.-G., Zhu, F., & Lei, C.-L. (2009). Structural characterization of nanoparticles loaded with garlic essential oil and their insecticidal activity against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Journal of Agricultural and Food Chemistry, 57, 10156–10162.
- Zhang, X., Zhang, J., & Zhu, K. (2010). Chitosan/double-stranded RNA nanoparticle-mediated RNA interference to silence chitin synthase genes through larval feeding in the African malaria mosquito (Anopheles gambiae). Insect Molecular Biology, 19, 683–693.
- Zhao, P., Cao, L., Ma, D., Zhou, Z., Huang, Q., & Pan, C. (2017). Synthesis of pyrimethanil-loaded mesoporous silica nanoparticles and its distribution and dissipation in cucumber plants. Molecules, 22, 817.
- Zhao, W., Lu, J., Ma, W., Xu, C., Kuang, H., & Zhu, S. (2011). Rapid on-site detection of Acidovorax avenae subsp. citrulli by gold-labeled DNA strip sensor. Biosensors and Bioelectronics, 26, 4241–4244.
- Zheng, Z., Zhou, Y., Li, X., Liu, S., & Tang, Z. (2011). Highly-sensitive organophosphorous pesticide biosensors based on nanostructured films of acetylcholinesterase and CdTe quantum dots. Biosensors and Bioelectronics, 26, 3081–3085.